Extended Tomlinson Model for Rheological Response


We investigate the response of a confined harmonic chain to an external harmonic driving force. A model is introduced which extends the one-dimensional Tomlinson model to include motion in the normal direction. This model with lateral-normal coupling mimics recent measurements on friction, using surface forces apparatus (SFA). The model predicts a critical driving amplitude below which the response is linear. For higher amplitudes the system exhibits a nonlinear behavior and an apparent shear thinning. We discuss the effects of shear induced dilatancy, which results from the lateral-normal coupling, on the energy dissipation, and therefore on the frictional properties. It is demonstrated that measurements of response in the normal direction provide additional information on the mechanisms of friction.

This is a preview of subscription content, access via your institution.


  1. [1]

    F. P. Bowden and D. Tabor, The Friction and Lubrications of Solids (Clarenton Press, Oxford, 1985).

    Google Scholar 

  2. [2]

    Micro/Nanotribology and its Applications, edited by B. Bhushan (Kluwer Academic Publishers, Dordrecht, 1997).

    Google Scholar 

  3. [3]

    H. Yoshizawa, P. McGuiggan, and J. Israelachvili, Science 259, 1305 (1993).

    CAS  Article  Google Scholar 

  4. [4]

    H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).

    CAS  Article  Google Scholar 

  5. [5]

    J. Klein and E. Kumacheva, Science 269, 816 (1995).

    CAS  Article  Google Scholar 

  6. [6]

    P. A. Thomson, M. O. Robbins, and G. S. Grest, Israel Journal of Chemistry 35, 93 (1995).

    Article  Google Scholar 

  7. [7]

    M. G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 77, 683 (1996).

    CAS  Article  Google Scholar 

  8. [8]

    J. M. Carlson and A. A. Batista, Phys. Rev. E 52, 4153 (1996).

    Article  Google Scholar 

  9. [9]

    Y. Braiman, F. Family, and G. Hentschel, Phys. Rev. B 55, 5491 (1996).

    Article  Google Scholar 

  10. [10]

    J. P. Gao, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997).

    CAS  Article  Google Scholar 

  11. [11]

    M. G. Rozman, M. Urbakh, J. Klafter, and F.-J. Elmer, J. Phys. Chem. 102, 7924 (1998).

    CAS  Article  Google Scholar 

  12. [12]

    B. N. J. Persson, Sliding Friction. Physical Properties and Applications (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  13. [13]

    T. Baumberger and C. Caroli, Eur. Phys. J. B 4, 13 (1998).

    CAS  Article  Google Scholar 

  14. [14]

    J. D. Ferry, Viscoelastic Properties of Polymers (John Willey & Sons, Inc., New York, 1970).

    Google Scholar 

  15. [15]

    J. Peachey, J. V. Alsten, and S. Granick, Rev. Sci. Instrum. 62, 462 (1991).

    Article  Google Scholar 

  16. [16]

    Y.-K. Cho and S. Granick, Wear 200, 346 (1996).

    CAS  Article  Google Scholar 

  17. [17]

    G. Luengo, J. Israelachvili, and S. Granick, Wear 200, 328 (1996).

    CAS  Article  Google Scholar 

  18. [18]

    V. Zaloj, M. Urbakh, and J. Klafter, Phys. Rev. Lett. 81, 1227 (1998).

    CAS  Article  Google Scholar 

  19. [19]

    G. A. Tomlinson, Philos. Mag. 7, 905 (1929).

    CAS  Article  Google Scholar 

  20. [20]

    M. G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. E 54, 6485 (1996).

    CAS  Google Scholar 

  21. [21]

    G. Luengo, F.-J. Schmitt, R. Hill, and J. Israelachvili, Macromolecules 30, 2482 (1997).

    CAS  Article  Google Scholar 

  22. [22]

    A. D. Berman, W. A. Ducker, and J. N. Israelachvili, Langmuir 12, 4559 (1996).

    CAS  Article  Google Scholar 

  23. [23]

    V. Zaloj, M. Urbakh, and J. Klafter, J. Chem. Phys. 110, (1999), in Press.

  24. [25]

    E. Kumacheva and J. Klein, J. Chem. Phys. 108, 7010 (1998).

    CAS  Article  Google Scholar 

  25. [26]

    S. Nasuno, A. B. A. Kudrolli, and J. P. Golub, Phys. Rev. E 58, 2161 (1998).

    CAS  Article  Google Scholar 

  26. [27]

    P. A. Thomson and G. S. Grest, Phys. Rev. Lett 67, 1751 (1991).

    Article  Google Scholar 

  27. [28]

    A. L. Demirel and S. Granick, J. Chem. Phys. 109, 6889 (1998).

    CAS  Article  Google Scholar 

  28. [29]

    M. G. Rozman, M. Urbakh, and J. Klafter, Phys. Rev. E 57, 7340 (1998).

    CAS  Article  Google Scholar 

  29. [30]

    F. J. Elmer, Phys. Rev. E 57, R4903 (1998).

    CAS  Article  Google Scholar 

  30. [31]

    J. P. Gao, W. D. Luedtke, and U. Landman, J. Phys. Chem. B 102, 5033 (1998).

    CAS  Article  Google Scholar 

  31. [32]

    M. Heuberger, C. Drummond, and J. Israelachvili, J. Phys. Chem. B 102, 5038 (1998).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. Zaloj.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zaloj, V., Urbakh, M. & Klafter, J. Extended Tomlinson Model for Rheological Response. MRS Online Proceedings Library 543, 69–78 (1998). https://doi.org/10.1557/PROC-543-69

Download citation