Studies of the Polymer Thin Film Glass Transition Temperature Monitored With the Complex Viscoelastic Cofficients

Abstract

In integrated circuit manufacturing, the gaps between metal lines are a critical parameter, and polymer films are being evaluated as low k dielectric materials for VLSI. Desire to maximize the number of elements within a given area to increase clock speed and decrease power consumption have forced the gaps to become increasingly smaller. Currently, 0.25-0.18 micron line widths are the subject of much commercial interest. A line width of 0.25 microns is within a factor of 5 of the molecular dimension of most commercial polymers. Experiments have suggested polymer films slightly smaller than these dimensions may not have the expected bulk mechanical properties. This deviation from the expected behavior (i.e., Change in the glass transition temperature) would present significant technical challenges to the manufacturing and reliability of integrated circuits. These effects are extremely difficult to determine experimentally with requisite precision. Recently, an experimental technique, based on a highly modified quartz crystal microbalance, has been developed to study the mechanical properties of these ultra-thin polymer films with high precision. The experimental details and preliminary results from this recently developed state-of-the-art experimental technique will be presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    The National Technology Roadmap for Semiconductors., 1998, Sematech

  2. 2.

    Frank, C. W., et al., Science, 1996. 273(16 August): p. 912–915.

    CAS  Article  Google Scholar 

  3. 3.

    Forrest, J. A., Dalnoki-Veress, K., and Dutcher, J. R., Phys. Rev. Lett., 1996. 77(10): p. 2002.

    CAS  Article  Google Scholar 

  4. 4.

    Forrest, J.A., Dalnoki-Veress, K., and Dutcher, J. R., Phys. Rev. E., 1997. 56: p. 5707.

    Article  Google Scholar 

  5. 5.

    Mason, W. P., Physical Acoustics and the Properties of Solids. 1958, New York: D. Van Nostrand Company.

    Google Scholar 

  6. 6.

    Mason, W. P., Piezoelectric Crystals and Their Application to Ultrasonics. 1950, New York: D. Van Nostrand Company.

    Google Scholar 

  7. 7.

    Ferry, J. D., Viscoelastic Properties of Polymers. 3rd ed. 1980, New York: John Wiley and Sons, Inc.

    Google Scholar 

  8. 8.

    Fretigny, C. and Basire, C., J. Appl. Phys., 1997. 82(1): p. 43.

    CAS  Article  Google Scholar 

  9. 9.

    Kajiyama, T., Tanaka, K., and Takahara, A., Macromolecules, 1997. 30: p. 280.

    CAS  Article  Google Scholar 

  10. 10.

    Nwankwo, E. and Durning, C. J., Rev. of Sci. Instrum., 1998. 69(6): p. 2375.

    CAS  Article  Google Scholar 

  11. 11.

    Okahata, Y. and Ebato, H., Analytical Chemistry, 1989. 61: p. 2185.

    CAS  Article  Google Scholar 

  12. 12.

    Kutzner, H., Luckham, P., and Rennie, J., FARADAY DIS., 1996. 104: p. 9–16.

    CAS  Article  Google Scholar 

  13. 13.

    Bordarier, P., Schoen, M., and Fuchs, A., PHYS. REV. E, 1998. 57(2): p. 1621–1635.

    CAS  Article  Google Scholar 

  14. 14.

    Domke, J. and Radmacher, M., Langmuir, 1998. 14: p. 3320–3325.

    CAS  Article  Google Scholar 

  15. 15.

    Koltover, I., et al., JOURNAL DE PHYSIQUE II, 1996. 6(6): p. 893–907.

    CAS  Article  Google Scholar 

  16. 16.

    Cho, Y., Cai, L., and Granick, S., TRIBOLOGY INTERNATIONAL, 1997. 30(12): p. 889–894.

    CAS  Article  Google Scholar 

  17. 17.

    White, C., Ph.D. Thesis, 1994, University of Wisconsin-Madison.

    Google Scholar 

  18. 18.

    White, C. C. and Schrag, J. L., In press: J. Chem. Phys, 1998.

    Google Scholar 

  19. 19.

    Hillier, A.C. and Ward, M. D., Anal. Chem., 1992. 64: p. 2539-54.

    CAS  Article  Google Scholar 

  20. 20.

    Brandup, J. and Immergut, E. H., Polymer Handbook. 2nd ed. 1975, New York: Wiley.

    Google Scholar 

  21. 21.

    Wallace, W. E., van-Zanten, J. H., and Wu, W. L., Phys. Rev. E., 1995. 52: p. R33299.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. C. White.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

White, C.C., Wu, W.L. Studies of the Polymer Thin Film Glass Transition Temperature Monitored With the Complex Viscoelastic Cofficients. MRS Online Proceedings Library 543, 175–180 (1998). https://doi.org/10.1557/PROC-543-175

Download citation