Abstract
Static induction transistors (SITs) are short channel FET structures which are suitable for high power, high frequency and high temperature applications. GaN has particularly favorable properties for SIT operation. However, such a device has not yet been fabricated. In this paper we report simulation studies on GaN static induction transistors over a range of device structures and operating conditions. The transistor was modeled with coupled drift-diffusion and heat-flow equations. We found that the performance of the device depends sensitively on the thermal boundary conditions, as self-heating effects limit the maximum voltage swing.
This is a preview of subscription content, access via your institution.
References
- [1]
M.S. Shur, M.A. Khan, Mat. Res. Bull. 22 (2), 44 (1997).
- [2]
M.A. Khan, Q. Chen, M. Shur, B. Dermott, J. Higgins, J. Burm, W. Schaff, L. Eastman, Solid State Electron. 41, 1555 (1997).
- [3]
R.R. Siergiej, R.C. Clarke, IEDM-95, 353 (1995).
- [4]
K. Moore, R.J. Trew, MRS Bulletin, March, 50 (1997).
- [5]
S. Binari, The 2nd Int. Conf. On III-V Nitrides, Tokushima, Japan (1997).
- [6]
R.J. Trew, M. Shin, W. Gatto, Solid State Electron. 41, 1561 (1997).
- [7]
Y.F. Wu, B. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. Denbaars, U. Mishra, Solid State Electron. 41, 1569 (1997).
- [8]
J. Burm, W. Schaff, G. Martin, L. Eastman, H. Amano, I. Akasaki, Solid State Electron. 41, 247 (1997).
- [9]
Y.F. Wu, B. Keller, S. Keller, P. Fini, J. Pusl, M. Le, N. Nguyen, C. Nguyen, D. Widman, S. Keller, S. Denbaars, U. Mishra, Electron. Lett. 33, 1742 (1997).
- [10]
M.A. Khan, Q. Chen, M. Shur, B. Dermott, J. Higgins, J. Burm, W. Schaff, L. Eastman, IEEE Electron Device Lett. 17, 584 (1996).
- [11]
Y.F. Wu, B. Keller, S. Keller, N. Nguyen, IEEE Electron Device Lett. 18, 438 (1997).
- [12]
Atlas User’s Manual (Device simulation software), Silvaco Inc., Version 1.5.0. (1997).
- [13]
H. Anderson, Physics Vade Mecum (AIP, 1981).
- [14]
E.K. Sichel, J.I. Pankove, J. Phys. Chem. Solids 38, 330 (1978).
- [15]
A.V. Dmitriev, A.L. Oruzheinikov, MRS Internet J. Nitride Semic. Res. 1, 46 (1996).
- [16]
J.D. Albrech, MRS Nitride Symp. Proc., 423 (1996).
- [17]
M. Shur, J. Electron. Mat. 25, 777 (1996).
- [18]
U. Bhapkar, M.S. Shur, J. Appl. Phys. 82 (4), 1649 (1997).
- [19]
W. Götz, N.M. Johnson, C. Chen, H. Liu, C. Kuo, W. Imler, Appl. Phys. Lett. 68 (22), 3144 (1996).
- [20]
S. Nakamura, T. Mukai, M. Senoh, Jpn. J. of Appl. Phys. 31, 2883 (1997).
- [21]
N. Weimann, L. Eastman, D. Doppalapudi, H. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998).
- [22]
S. Selberherr, Analysis and simulation of semiconductor devices (Wien-New York, 1984).
- [23]
I.H. Oguzman, E. Bellotti, K. Brennan, J. Kolnik, R. Wang, P. Ruden, J. Appl. Phys. 81 (12), 7827 (1997).
- [24]
E. Hahne, U. Grigull, Int. J. Heat Mass Transfer 18, 751 (1975).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bunea, G.E., Dunham, S.T. & Moustakas, T.D. Modeling of a GaN Based Static Induction Transistor. MRS Online Proceedings Library 537, 641 (1998). https://doi.org/10.1557/PROC-537-G6.41
Published: