Thermal Stability of GaN Investigated by Raman Scattering


We have investigated the thermal stability of GaN using Raman scattering. Noninvasive optical monitoring of the degradation of GaN during high-temperature processing has been demonstrated. GaN samples grown by molecular-beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOCVD) were studied. Characteristic features in the Raman spectrum identify three thermal stability regimes: (1) annealing below 900°C does not affect the GaN Raman spectrum; (2) annealing between 900°C and 1000°C results in the appearance of disorder-induced Raman scattering between the E2 and A1(LO) phonon; (3) annealing at temperatures higher than 1000°C gives rise to distinct Raman modes at 630 cm-1, 656 cm-1 and 770 cm-1. The evolution of the Raman spectrum of GaN with increasing annealing temperature is discussed in terms of disorder-induced Raman scattering. We find clear indications for an interfacial reaction between GaN and sapphire for annealing temperatures higher than 1000°C.

This is a preview of subscription content, access via your institution.


  1. [1]

    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Appl. Phys. Lett. 72, 211 (1998).

    CAS  Article  Google Scholar 

  2. [2]

    Y.-K. Song, M. Kuball, A.V. Nurmikko, G.E. Bulman, K. Doverspike, S.T. Shappard, T.W. Weeks, M. Leonard, H.S. Kong, H. Dieringer, and J. Edmonds, Appl. Phys. Lett. 72, 1418 (1998).

    CAS  Article  Google Scholar 

  3. [3]

    S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys. 31, L139 (1992).

    CAS  Article  Google Scholar 

  4. [4]

    M.A. Khan, Q. Chen, R.A. Skogman, and J.N. Kuznia, Appl. Phys. Lett. 66, 2046 (1995).

    CAS  Article  Google Scholar 

  5. [5]

    M. Kuball, F. Demangeot, J. Frandon, M.A. Renucci, J. Massies, N. Grandjean, R.L. Aulombard, and O. Briot, Appl. Phys. Lett. 73, 960 (1998).

    CAS  Article  Google Scholar 

  6. [6]

    J.C. Zolper, M. Hagerott Crawford, A.J. Howard, J. Ramer, and S.D. Hersee, Appl. Phys. Lett. 68, 200 (1996).

    CAS  Article  Google Scholar 

  7. [7]

    J. Hong, J.W. Lee, J.D. MacKenzie, S.M. Donovan, C.R. Abernathy, S.J. Pearton, and J.C. Zolper, Semicond. Sci. Technol. 12, 1310 (1997).

    CAS  Article  Google Scholar 

  8. [8]

    H. Siegle, G. Kaczmarczyk, L. Filippidis, A.P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B 55, 7000 (1997).

    CAS  Article  Google Scholar 

  9. [9]

    T. Azuhata, T. Matsunaga, K. Shimada, K. Yoshida, T. Sota, K. Suzuki, and S. Nakamura, Physica B 219&220, 493 (1996).

    Article  Google Scholar 

  10. [10]

    M.E. Lin, B.N. Sverdiov, and H. Morkoç, Appl. Phys. Lett. 63, 3625 (1993).

    CAS  Article  Google Scholar 

  11. [11]

    F. Demangeot, J. Frandon, M.A. Renucci, O. Briot, B. Gil, R.-L. Aulombard, MRS Internet J. Nitride Semicond. Res. 1, 23 (1996).

    Article  Google Scholar 

  12. [12]

    A. S. Barker Jr, Phys. Rev. 132, 1474 (1963).

    CAS  Article  Google Scholar 

  13. [13]

    L. Grabner, J. Appl. Phys. 49, 580 (1978).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. Kuball.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuball, M., Demangeot, F., Frandon, J. et al. Thermal Stability of GaN Investigated by Raman Scattering. MRS Online Proceedings Library 537, 628 (1998).

Download citation