Computational Materials Science, an Increasingly Reliable Engineering Tool: Anomalous Nitride Band Structures and Device Consequences

Abstract

Computational materials science has evolved in recent years into a reliable theory capable of predicting not only idealized materials and device performance properties, but also those that apply to practical engineering developments. The codes run on workstations and even now are fast enough to be useful design tools. A review will be presented of the current status of this rapidly advancing field. Examples of the accuracy of the codes are displayed by comparing the predicted atomic volumes, and cohesive and excess energies of several materials with experiment. As a further demonstration of the methods, the band structures of AIN, GaN, and InN in wurtzite and zinc blende structures will be presented. There are anomalies in the conduction and valence bands of these materials. Some consequences on light emitting and power devices made from these materials will be examined.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A.-B. Chen and A. Sher, Semiconductor Alloys, (Plenum, New York, 1995).

    Google Scholar 

  2. 2.

    M. van Schilfgaarde, A. Sher, and A.-B. Chen, J. Cryst. Growth 178, 8 (1997).

    Article  Google Scholar 

  3. 3.

    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  4. 4.

    J. P. Perdew, K. Burke and M. Enzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    H. R Rücker (unpublished).

  6. 6.

    O. K. Andersen, Phys. Rev. B 12, 3060 (1975).

    CAS  Article  Google Scholar 

  7. 7.

    M. Methfessel, Phys. Rev. B 38, 1537 (1988).

    CAS  Article  Google Scholar 

  8. 8.

    M. A. Berding, M. van Schilfgaarde, and A. Sher, Thermodynamics and Electronic Properties of GaN and Related Alloys (unpublished).

  9. 9.

    R. Pandey, J. E. Jaffe, and N. M. Harrison, J. Mater. Res. 8, 1922 (1993).

    CAS  Article  Google Scholar 

  10. 10.

    W. A. Harrison, Phys. Rev. B 31, 2121 (1985).

    CAS  Article  Google Scholar 

  11. 11.

    Rubio, J. L. Corkill, M. L. Cohen, E. L. Shirley, and S. G. Louie, Phys. Rev. B 48, 11810 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    D. Elwell and M. M. Elwell, Prog. Cryst. Growth Charact. 17, 53 (1988).

    CAS  Article  Google Scholar 

  13. 13.

    N. E. Christensen and I. Gorczyca, Phys. Rev. B 50, 4397 (1994); Ibid., 47, 4307 (1993).

    CAS  Article  Google Scholar 

  14. 14.

    W. G. Bi and C. W. Tu, J. Appl. Phys. 80, 1934 (1996).

    CAS  Article  Google Scholar 

  15. 15.

    S. Nakamura, Chapter xxx, this volume, 1998.

  16. 16.

    V. Fiorentini, M. Methfessel, and M. Scheffler, Phys. Rev. B 47, 13353 (1993).

    CAS  Article  Google Scholar 

  17. 17.

    W. R. L. Lambrecht, B. Segall, J. Rife, W. R. Hunter, and D. K. Wickenden, Phys. Rev. B 51, 13516 (1995).

    Article  Google Scholar 

  18. 18.

    K. Miwa and A. Fukumoto, Phys. Rev. B 48, 7897 (1993).

    CAS  Article  Google Scholar 

  19. 19.

    M. Palummo, L. Reining, R. W. Godby, C. M. Bertoni, and N. Bornsen, Europhysics Lett. 26, 607 (1994).

    CAS  Article  Google Scholar 

  20. 20.

    M. Palummo, R. Del Sole, L. Reining, F. Bechstedt, and G. Cappellini, Solid State Commun. 95, 393 (1995).

    CAS  Article  Google Scholar 

  21. 21.

    W. R. L. Lambrecht, B. Segall, S. Strite, G. Martin, A. Agarwal, H. Morkoa, and A. Rockett, Phys. Rev. B 50, 14155 (1994).

    CAS  Article  Google Scholar 

  22. 22.

    For a general overview of the density functional theory and its applications, see the review by R. O. Jones and O. Gunnarsson, Rev. Mod. Physics, 61, 688 (1989).

  23. 23.

    P. B. Perry and R. F. Rutz, Apply. Phys. Lett. 33, 319 (1978)

    CAS  Article  Google Scholar 

  24. 24.

    Monemar, Phys. Rev. B 10, 676 (1974).

    CAS  Article  Google Scholar 

  25. 25.

    T. L. Tansley and C. P. Foley, J. Appl. Phys., 59 3241 (1986).

    CAS  Article  Google Scholar 

  26. 26.

    H. Hong, D. Pavlidis, S. W. Brown, and S. C. Rand, J. Appl. Phys. 77, 1705 (1995).

    CAS  Article  Google Scholar 

  27. 27.

    F. Aryasetiawan and O. Gunnarsson, Phys. Rev. B 54, 17564 (1996).

    Article  Google Scholar 

  28. 28.

    S.-H. Wei, L. G. Ferreira, J. E. Bernard, and A. Zunger, Phys. Rev. B 42, 9622 (1990).

    CAS  Article  Google Scholar 

  29. 29.

    K. Kim, S. Limpigumnong, W. R. L. Lambrecht, and B. Segall, MRS. Proc. 449, 929 (1997).

    CAS  Article  Google Scholar 

  30. 30.

    L. Bellaiche, S. H. Wei, and A. Zunger, Phys. Rev. B 21, 13872 (1997).

    Article  Google Scholar 

  31. 31.

    A. F. Wright and J. S. Nelson, Appl. Phys. Let. 66, 3465 (1995); ibid. Appl. Phys. Let 66, 3051 (1995).

    CAS  Article  Google Scholar 

  32. 32.

    M. A. Khan, R. A. Skogman, R. G. Schulze, and M. Gershenzon, Appl. Phys. Lett. 43, 492 (1983).

    CAS  Article  Google Scholar 

  33. 33.

    D. K. Wickenden, C. B. Bargeron, W. A. Bryden, J. Miragliotta, and T. J. Kistenmacher, Appl. Phys. Lett. 65, 2024 (1994).

    CAS  Article  Google Scholar 

  34. 34.

    M. R. H. Khan, Y. Koide, H. Itoh, N. Sawaki, and I. Akasaki, Solid State Comm. 60, 509 (1986).

    CAS  Article  Google Scholar 

  35. 35.

    Koide, H. Itoh, M. R. H. Khan, K. Hiramatu, N. Sawaki, and I. Akasaki, J. Appl. Phys. 61, 4540 (1987).

    CAS  Article  Google Scholar 

  36. 36.

    Rubio and M. L. Cohen, Phys. Rev. B, 51 4343 (1995).

    CAS  Article  Google Scholar 

  37. 37.

    J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 51, 10568 (1995).

    CAS  Article  Google Scholar 

  38. 38.

    L. Bellaiche, S.-H. Wei, and A. Zunger, Appl. Phys. Lett. 70, 3558 (1997).

    CAS  Article  Google Scholar 

  39. 39.

    M. van Schilfgaarde (unpublished).

  40. 40.

    S. Krishnamurthy, M. van Schilfgaarde, A. Sher, A.-B. Chen, Appl. Phys. Lett. 71, 1 (1997).

    Article  Google Scholar 

  41. 41.

    Gelmont, K. Kim, and M. Shur, J. Appl. Phys. 74, 1818 (1993).

    CAS  Article  Google Scholar 

  42. 42.

    N. S. Mansour, K. W. Kim, and M. A. Littlejohn, J. Appl. Phys. 77, 2834 (1995).

    CAS  Article  Google Scholar 

  43. 43.

    J. Kolnik, I. H. Oguzman, K. Brennan, R. Wang, P. Ruden, Y. Wang, J. Appl. Phys. 78, 1033 (1995).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Sher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sher, A., van Schilfgaarde, M., Berding, M.A. et al. Computational Materials Science, an Increasingly Reliable Engineering Tool: Anomalous Nitride Band Structures and Device Consequences. MRS Online Proceedings Library 537, 51 (1998). https://doi.org/10.1557/PROC-537-G5.1

Download citation