Pressure Dependence of Optical Transitions in InGaN/GaN Multiple Quantum Wells

Abstract

The effect of hydrostatic pressure on optical transitions in InGaN/GaN multiple quantum wells (MQWs) has been studied. Photoluminescence (PL) and photomodulated transmission (PT) measurements were performed under applied pressure to examine the pressure dependence of optical transitions associated with confined states in MQWs. The PL emission from the MQWs was found to shift linearly to higher energy with applied pressure but exhibit a significantly weaker pressure dependence compared to epilayer samples with similar bandgap energies. Similar pressure coefficients obtained by PT measurements rule out the possibility of PL resulting from deep localized states. We show that the difference in the compressibility of InGaN and of GaN induces a tensile strain in the compressively strained InGaN well layers that partially compensates the applied hydrostatic pressure. This mechanical effect is the primary factor for the smaller pressure dependence of the optical transitions in the InGaN/GaN MQWs. At pressure above 100 kbar, the PL signal in MQWs samples is quenched, indicating that the carriers involved in the radiative recombination processes in the well layers originate primarily from the adjacent GaN layers.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    W. Shan, J.J. Song, Z.C. Feng, M. Schurman, and R.A. Stall, Appl. Phys. Lett. 71, 2433 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    W. Shan, J.W. Ager III, W. Walukiewicz, E.E. Haller, M.D. McCluskey, N.M. Johnson, D.P. Bour, Phys. Rev. B58, R10191(1998).

    Article  Google Scholar 

  3. 3.

    D.L. Camphausen and G.A.N. Connell, J. Appl. Phys. 42, 4438 (1971).

    CAS  Article  Google Scholar 

  4. 4.

    N.E. Christensen and I. Gorczyca, Phys. Rev. B50, 4397(1994).

    Article  Google Scholar 

  5. 5.

    P. Perlin, V. Iota, B.A. Weinstein, P. Wisniewski, T. Suski, P.G. Eliseev, and M. Osinski, Appl. Phys. Lett. 70, 1993 (1997).

    Article  Google Scholar 

  6. 6.

    P. Perlin, C. Kisielowski, V. Iota, B.A. Weinstein, L. Mattos, J. Kruger, E.R. Weber, and J.W. Yang, Appl. Phys. Lett. 73, 2778 (1998).

    CAS  Article  Google Scholar 

  7. 7.

    M.D. McCluskey, C.G. Van de Walle, C.P. Master, L.T. Romano, and N.M. Johnson, Appl. Phys. Lett. 72, 2725 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    B. Gil, D.J. Dunstan, J. Calatayud, H. Mathieu, and J.P. Faurie, Phys. Rev. B40, 5522(1990).

    Google Scholar 

  9. 9.

    J.A. Tuchman and I.P. Herman, Phys. Rev. B45, 11929(1991).

    Google Scholar 

  10. 10.

    M. Ueno, M. Yoshida, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B49, 14(1994).

    Article  Google Scholar 

  11. 11.

    M. Leszczynski, T. Suski, P. Perlin, H. Teisseyre, I. Crzegory, M. Bokowski, J. Jun, S. Porowski, and J. Major, J. Phys. D28, A149(1995).

    Google Scholar 

  12. 12.

    A. Polian, M. Grimsditch, and I. Grzegory, J. Appl. Phys. 79, 3343 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to W. Shan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shan, W., Ager, J.W., Walukiewicz, W. et al. Pressure Dependence of Optical Transitions in InGaN/GaN Multiple Quantum Wells. MRS Online Proceedings Library 537, 315 (1998). https://doi.org/10.1557/PROC-537-G3.15

Download citation