Evaluation of Potential Printed Wiring Board Materials: Thermoplastic Polyimide + Polymer Liquid Crystal Blends


Polymer liquid crystals (PLCs) have potential applications as printed wiring board materials and in other aspects of plastic packaging. They have a number of desirable properties such as low moisture absorption, thermoplastic behavior, and low thermal expansivity. However, PLCs can have significant anisotropy in expansivity with negative expansivities in the drawing or molding direction and relatively low positive expansivities in the transverse directions. By incorporating PLCs into an engineering polymer (EP) matrix, in our case a thermoplastic polyimide (TPI), we expected to be able to control the expansivity of the resulting blend - thereby aiding in long-term service performance and reliability. Properties such as low moisture absorption, dimensional stability at elevated temperatures, good adhesion properties, and reworkability were also sought. In this paper, we report on our work to process a TPI/PLC blend and characterize the thermal properties of the blends.

An amorphous TPI was chosen over a semicrystalline one because of a thermo-irreversible cold crystallization in the latter, causing undesirable changes in the morphology and poor adhesion to metals. Our evaluations of TPIs through thermally stimulated depolarization (TSD) and temperature-modulated differential scanning calorimetry (TMDSC) reveal sub-glass transition relaxations. We have investigated the selected semicrystalline TPI + PLC pair in the entire composition range, and concluded that the narrower range, up to 30 wt. % of the PLC, is sufficient for the achievement of our objectives. The glass transition temperature Tg = 240°C of the TPI determined by DSC is unaffected by variations of the PLC concentration. The cold crystallization temperature of the semicrystalline TPI decreases with increasing PLC concentration but upon formation of the LC-rich islands this effect becomes smaller. All the blends exhibit degradation onset temperature over 520°C. The thermal conductivity of the amorphous TPI + PLC blends varies as a function of the PLC concentration. The blends show very good film formability. The addition of the PLC improves the processability of the TPI. Thermomechanical analysis (TMA) reveals that the desired control of the expansivity of the blends is also achieved by varying the PLC concentration.

This is a preview of subscription content, access via your institution.


  1. 1.

    W. Brostow, Kuntstoffe, 78, 411 (1988).

    CAS  Google Scholar 

  2. 2.

    W. Brostow, Polymer, 31, 979 (1990).

    Article  Google Scholar 

  3. 3.

    W. Brostow and R. D. Corneliussen, eds., Failure of Plastics, Hanser Publishers, Munich-Vienna-New York, 1986, 1989, 1992.

    Google Scholar 

  4. 4.

    R. Aschenbrenner, J. Gwisada, J. Eldring, E. Zakel and H. Reichl, Interlational Electronics Packaging Conference, 794 Atlanta, Georgia (1994).

    Google Scholar 

  5. 5.

    N. R. Basavanhally, D. D. Chang, B. H. Cranston and S. G. Seger, IEEE transactions on components, hybrids and manufacturing technology, 15, 972 (1992)

    Article  Google Scholar 

  6. 6.

    R. Dietz and D. Peck, International Electronics Packaging Conference, 397Atlanta, Georgia, (1994).

    Google Scholar 

  7. 7.

    J. B. Friler and P. Cebe, Polymer Eng. and Sci. 33, 587 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    B. S. Hsiao, B. B. Sauer and A. Biswas, J. Polymer Sci. Phys., 32, 737 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    Y. Aihara and P. Cebe, Polymer Eng. and Sci. 34, 1275 (1993).

    Article  Google Scholar 

  10. 10.

    W. Brostow, N. A. D’Souza and B. Gopalanarayanan, Proc. ann. Tech. Conf Soc. Plast. Engrs., 55, 1499 (1997).

    Google Scholar 

  11. 11.

    W. Brostow, N. A. D’Souza and B. Gopalanarayanan, Polymer Eng. and Sci., 38, 204 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    C. L. Choy, Y. W. Wong, K. W. E. Lau, Guangwu Yang, A. F. Lee, J. AppL Polymer Sci. Phys., 33, 2055 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Godovsky, Thermophysical Properties of Polymers, Springer-Verlag Berlin, New York (1994).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brostow, W., D’Souza, N.A., Gopalanarayanan, B. et al. Evaluation of Potential Printed Wiring Board Materials: Thermoplastic Polyimide + Polymer Liquid Crystal Blends. MRS Online Proceedings Library 515, 125–130 (1998). https://doi.org/10.1557/PROC-515-125

Download citation