Low Frequency Noise In n-Type Gallium Nitride

Abstract

Low frequency noise has been investigated in hexagonal n-type GaN with equilibrium electron concentration n ∼ 1017 cm−3 at T=300 K. The frequency and temperature dependencies of the spectral density of the current noise, SI, have been studied in the frequency range f from 20 Hz to 20 kHz. Over the whole temperature range from T=80K to 400K the SI(f) dependence is very close to 1/f. The value of the Hooge constant, α, is very large: α ∼ 5–7 and is found to be temperature independent. The effects of illumination on the low frequency noise in GaN are studied for the first time. The noise is unaffected by illumination with photon energy Eph < Eg, while band-to band illumination (EphEg) influences the low frequency noise, increasing the noise at higher temperatures, and decreasing it at lower temperatures.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S.J. Pearton, C. Kuo, MRS Bulletin, February, 1997, pp. 17–19.

    Google Scholar 

  2. 2.

    S. Nakamura, MRS Bulletin, February, 1997, pp. 29–35.

    Google Scholar 

  3. 3.

    M.A. Khan, M.S. Shur, J.N. Kusnia, J. Burn, W. Shaff, Appl. Phys. Lett. 66, pp. 1083–1085 (1995).

    CAS  Article  Google Scholar 

  4. 4.

    L.K.J. Vandamme, S. Oosterhoff, Jour. Appl. Phys., 59, pp. 3169–3274 (1986).

    CAS  Article  Google Scholar 

  5. 5.

    N.V. Dyakonova, M.E. Levinshtein, S.L Rumyantzev, Sov. Phys. Semicond., 25, pp. 217–218 (1991).

    Google Scholar 

  6. 6.

    L.K.J. Vandamme, IEEE Trans. on Electron. Dev., 41, pp. 2176–2187 (1994).

    CAS  Article  Google Scholar 

  7. 7.

    D. Ursutiu, B.K. Jones, Sem.Sci.Techn., 11, pp. 1133–1136 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    R.D. Black, M.B. Weissman, P.J. Restle, Joum. Appl. Phys., 53, pp. 6280–6284 (1982).

    CAS  Article  Google Scholar 

  9. 9.

    R.F. Voss, J. Clark, Phys.Rev. B 13, pp. 556–573 (1976).

    CAS  Article  Google Scholar 

  10. 10.

    F.N. Hooge, T.G.M. Kleinpenning, L.K.J. Vandamme, Rep. Progr. Phys., 44, pp. 479–532 (1981).

    Article  Google Scholar 

  11. 11.

    F.N. Hooge and M. Tacano, Physica B, 190, pp. 145–149 (1993).

    CAS  Article  Google Scholar 

  12. 12.

    S. Tehrani, L.L. Hench, C.M. Van Vliet, G.S. Bosman, J. Appl. Phys., 58, pp. 1571–1577 (1985).

    CAS  Article  Google Scholar 

  13. 13.

    J.V. Palmour, M.E. Levinshtein, S.L. Rumyantsev, and G.S. Simin, Appl. Phys.Lett., 68, pp. 2669–2271 (1996).

    CAS  Article  Google Scholar 

  14. 14.

    H.C. Casey, D.D. Saell, K.W. Weight, J. Appl. Phys., 46, pp. 250–257 (1975).

    CAS  Article  Google Scholar 

  15. 15.

    O. Ambacher, V. Reiger, M. Stutzman, Absract Book of Topical Workshop on 111-V Nitrides, Nagoya, Sept., 1995, p.F–5.

    Google Scholar 

  16. 16.

    N.V. Dyakonova, M.E. Levinshtein, Soy. Phys. Semicond., 23, pp. 743–746 (1989).

    Google Scholar 

  17. 17.

    N.V. Dyakonova, Soy. Phys. Semicond.,.25, pp, 219–220 (1991).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Dyakonova.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dyakonova, N., Levinshtein, M., Contreras, S. et al. Low Frequency Noise In n-Type Gallium Nitride. MRS Online Proceedings Library 512, 21–26 (1998). https://doi.org/10.1557/PROC-512-21

Download citation