The Origin of Nanopipes and Micropipes in Non-Cubic GaN and SiC

Abstract

Micro/nanopipes are linear defects along the c-axis of hexagonal polytypes of SiC and GaN that are currently the focus of much attention. It has been shown that these defects can be very detrimental to the electronic properties of devices manufactured from, at least, 6H-SiC. In this paper, the origin of these defects is discussed in terms of Frank’s theory [1] that dislocations will have a hollow core when their Burgers vector is large. Two fundamental issues about such dislocations are addressed: their formation along the c-axis of the crystal, and their stability despite their large Burgers vectors [2]. The proposed model is based on the mosaic structure of sublimation-grown 6H- or 4H-SiC, and VPE-grown 2H-GaN on sapphire substrates. The presence of unit c-axis screw dislocations is attributed to the accommodation of low-angle twist boundaries in the mosaic structure. The formation of superscrew dislocations with large Burgers vector, which empty their cores to reduce the excessive strain energy there, is shown to be the result of 3c screw dislocations in the axis of triple junctions which “getter” the neighboring unit dislocations and simultaneously increase their diameter. The predictions of the model are compared with available data in the literature, and suggestions are made for the decrease of nano/micropipe density.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    F. C. Frank, Acta Cryst. 4, 497–501 (1951).

    CAS  Article  Google Scholar 

  2. 2.

    P. Pirouz, Phil. Mag. A (1998). In press.

    Google Scholar 

  3. 3.

    Y. M. Tairov and V. F. Tsvetkov, J. Crystal Growth 43, 209–212 (1978).

    CAS  Article  Google Scholar 

  4. 4.

    P. G. Neudeck and J. A. Powell, IEEE Electron Device Lett. 15, 63–65 (1994).

    CAS  Article  Google Scholar 

  5. 5.

    W. Qian, M. Skowronski, K. Doverspike, L. B. Rowland and D. K. Gaskill, J. Crystal Growth 151, 396–400 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    W. Qian, G. S. Rohrer, M. Skowronski, K. Doverspike, L. B. Rowland and D. K. Gaskill, Appl. Phys. Let. 67, 2284–2286 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    J. W. Yang, SiC: Problems in Crystal Growth and Polytypic Transformation, Ph. D. Thesis, Case Western Reserve University, 1993.

    Google Scholar 

  8. 8.

    J. Giocondi et al., Mat. Res. Soc. Symp. Proc. 423, 539–544 (1996).

    CAS  Article  Google Scholar 

  9. 9.

    Z. Lilienthal-Weber et al., Phys. Rev. Lett. 79, 2835–2938 (1997).

    Article  Google Scholar 

  10. 10.

    S. G. Müller, R. Eckstein, W. Hartung, D. Hofmann, M. Kölb, G. Pensl, E. Schmitt, E. J. Schmitt, A. D. Weber and A. Winnacker, Materials Science Forum 264–268, 33–36 (1998).

    Article  Google Scholar 

  11. 11.

    A. R. Verma, Crystal Growth and Dislocations, (Butterworths, London, 1953).

    Google Scholar 

  12. 12.

    Y. Inomata, H. Komatsu, M. Mitomo and Z. Inoue, J. Crystal Growth 2, 322–323 (1968).

    CAS  Article  Google Scholar 

  13. 13.

    P. Krishna, S.-S. Jiang and A. R. Lang, J. Crystal Growth 71, 41–56 (1985).

    CAS  Article  Google Scholar 

  14. 14.

    D. L. Barrett, J. P. McHugh, H. M. Hobgood, R. H. Hopkins, P. G. McMullin, R. C. Clarke and W. J. Choyke, J. Cryst. Growth 128, 358–362 (1993).

    CAS  Article  Google Scholar 

  15. 15.

    H. M. Hobgood, D. L. Barret, J. P. McHugh, R. C. Clarke, S. Sriram, A. A. Burk, J. Greggi, C. D. Brandt, R. H. Hopkins and W. J. Choyke, J. Cryst. Growth 137, 181–186 (1994).

    CAS  Article  Google Scholar 

  16. 16.

    M. Dudley, S. Wang, W. Huang, C. H. Carter, Jr., V. F. Tsvetkov and C. Fazi, J. Phys. D - Applied Physics 28, A63–A68 (1995).

    CAS  Article  Google Scholar 

  17. 17.

    F. C. Frank, Disc. Faraday Soc. 5, 48–54 (1949).

    Article  Google Scholar 

  18. 18.

    W. R. L. Lambrecht et al., Phys. Rev. B 44, 3685–3694 (1991).

    CAS  Article  Google Scholar 

  19. 19.

    K. Kim, W. R. L. Lambrecht and B. Segall, Phys. Rev. B 53, 16310–16326 (1996).

    CAS  Article  Google Scholar 

  20. 20.

    K. Kim, W. R. L. Lambrecht and B. Segall, Phys. Rev. B 56, 7018–7019 (1997).

    CAS  Article  Google Scholar 

  21. 21.

    W. R. L. Lambrecht and B. Segall, Mat. Res. Soc. Symp. Proc. 242, 367–372 (1992).

    CAS  Article  Google Scholar 

  22. 22.

    W. R. L. Lambrecht and B. Segall, Phys. Rev. B 48, 17841 (1993).

    Article  Google Scholar 

  23. 23.

    S. Amelinckx, in Dislocations in Particular Solids, edited by F. R. N. Nabarro (North-Holland Publishing Company 2, Chapter 6, Amsterdam, 1979), pp. 67–460.

  24. 24.

    P. Pirouz, Materials Science Forum 264–268, 399–408 (1998).

    Article  Google Scholar 

  25. 25.

    W. T. Read, Jr., Dislocations in Crystals, (McGraw-Hill, New York, 1953).

    Google Scholar 

  26. 26.

    R. C. Glass, L. O. Kielberg, V. F. Tsvetkov, J. E. Sundgren and E. Janzén, J. Crystal Growth 132, 504–512 (1993).

    CAS  Article  Google Scholar 

  27. 27.

    D. Kapolnek et al., Appl. Phys. Lett. 67, 1541–1543 (1995).

    CAS  Article  Google Scholar 

  28. 28.

    B. Heying et al., Appl. Phys. Lett. 68, 643–645 (1996).

    CAS  Article  Google Scholar 

  29. 29.

    H. Amano, T. Takeuchi, H. Sakai, S. Yamaguchi, C. Wetzel and I. Akasaki, Materials Science Forum 264–268, 1115–1120 (1998).

    Article  Google Scholar 

  30. 30.

    X. H. Wu et al., Jpn. J. Appl. Phys. 35, L1648–L1651 (1996).

    CAS  Article  Google Scholar 

  31. 31.

    F. R. Chien, X. J. Ning, S. Stemmer, P. Pirouz, M. D. Bremser and R. F. Davis, Appl. Phys. Lett. 68, 2678–2680 (1996).

    CAS  Article  Google Scholar 

  32. 32.

    W. Qian et al., Appl. Phys. Let. 66, 1252–1254 (1995).

    CAS  Article  Google Scholar 

  33. 33.

    X. J. Ning, F. R. Chien, P. Pirouz, J. W. Yang and M. Asif Khan, J. Mater. Res. 11, 580–592 (1996).

    CAS  Article  Google Scholar 

  34. 34.

    X. H. Wu, L. M. Brown, D. Kapolnek, B. Keller, S. P. Denbaars and J. S. Speck, J. Appl. Phys. 80, 3228–3237 (1996).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Pirouz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pirouz, P. The Origin of Nanopipes and Micropipes in Non-Cubic GaN and SiC. MRS Online Proceedings Library 512, 113–118 (1998). https://doi.org/10.1557/PROC-512-113

Download citation