Effect of Surface Modification on the Electrical Properties of TiO2 and SnO2 Nanopowders

Abstract

The surface modification of titania and tin dioxide nanopowders by hexamethyldisilazane and hexamethyldisiloxane grafting has been followed in situ by FT-IR spectroscopy. A grafting mechanism is proposed for both compounds and the formation of new surface species is discussed. Since TiO2 and SnO2 are widely used in chemical gas sensors due to their electrical properties, the respective behaviors of the non-grafted and grafted samples in reducing (CO) environment as well as the humidity effects are compared. Because the transmitted IR energy depends on the concentration of the free carriers, a correlation between the electrical conductivity variation and the perturbation of the IR spectra is attempted.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Watson, K. Ihokura and G.S.V. Coles, Meas. Sci. Technol.4, 711 (1993).

    Article  Google Scholar 

  2. 2.

    J.P. Devlin and V. Buch, Mikrochim. Acta14, 57 (1997).

    CAS  Google Scholar 

  3. 3.

    W. Riehemann, These proceedings.

  4. 4.

    M.-I. Baraton, High Temp. Chem. Processes3, 545 (1994).

    CAS  Google Scholar 

  5. 5.

    A.A. Tsyganenko and V.N. Filimonov, Spectroscopy Letters5, 477 (1972).

    CAS  Article  Google Scholar 

  6. 6.

    M. Primet, P. Pichat and M.V. Mathieu, J. Phys. Chem.75, 1216 (1971).

    CAS  Article  Google Scholar 

  7. 7.

    S.W. Ho, J. Chinese Chem. Soc.43, 155 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    G. Busca, H. Saussey, O. Saur, J.C. Lavalley and V. Lorenzelli, Appl. Catal.14, 245 (1985).

    CAS  Article  Google Scholar 

  9. 9.

    B.A. Morrow and A.H. Hardin, J. Phys. Chem.83 3135 (1979).

    CAS  Article  Google Scholar 

  10. 10.

    W. Hertl and M.L. Hair, J. Phys. Chem.75, 2181 (1971).

    Article  Google Scholar 

  11. 11.

    A.A. Tsyganenko, D.V. Pozdnyakov and V.N. Filimonov, J. Mol. Struct.29, 299 (1975).

    CAS  Article  Google Scholar 

  12. 12.

    A. Lee Smith, J. Chem. Phys.21, 1997 (1953).

    CAS  Article  Google Scholar 

  13. 13.

    N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press Ed., New York and London, 1964), p. 295.

    Google Scholar 

  14. 14.

    S. Lenaerts, J. Roggen and G. Maes, Spectrochim. Acta51A(5), 883 (1995).

    CAS  Article  Google Scholar 

  15. 15.

    W. Göpel, J. Hesse and J.N. Zemel (eds.), Chemical Sensors, Verlag, Weinheim (1990).

    Google Scholar 

  16. 16.

    M.-I. Baraton, Sensor and ActuatorsB31, 33 (1996).

    Article  Google Scholar 

  17. 17.

    F. Chancel, J. Tribout and M.-I. Baraton, Proceedings Euro Ceramic V, Trans Tech Publications, Zuerich, Switzerland, pp. 236–239 (1997).

    Google Scholar 

Download references

Acknowledgement

Dr. Wemer Riehemann and Dr. Hans Ferkel (TU-Clausthal, Germany) are gratefully acknowledged for providing us with Sn02 nanosized powder. This work has been partly performed in the framework of a BRITE-EURAM In project (BRPR-CT95-002) funded by the European Commission.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabienne Chancel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chancel, F., Tribout, J. & Baraton, MI. Effect of Surface Modification on the Electrical Properties of TiO2 and SnO2 Nanopowders. MRS Online Proceedings Library 501, 89–94 (1997). https://doi.org/10.1557/PROC-501-89

Download citation