Non-Debye and CPA Behaviors of Ionic Materials


Non-Debye and constant-phase-angle (CPA) behaviors associated with the bulk and interfacial processes involving ionic materials are discussed in terms of complex impedance, admittance, and dielectric spectra. The yielding of a CPA and/or a broad non-Debye dielectric loss peak in a spectrum from fractal, pore, and ion-hopping models are compared and reviewed. The observed wide frequency ranges of the CPA behavior suggest that the fractal and pore models, which require a wide range of special structures down to very fine scales, may not be realistic. The ion-hopping model treats the bulk and interfacial processes as a chemical reaction having a thermally-activated Arrhenius form. Because of thermal fluctuations, the activation energies for ion hopping (e.g., in a potential double-well) have a double-exponential distribution which yields a non-Debye dielectric loss peak and a CPA spectrum over a wide frequency range above the loss peak. The distribution also has a special temperature dependence which may explain the invariance of dielectric spectral shapes with temperature, an observation by Joscher. The construction of CPA elements (in a generalized Warburg impedance form) using three distinct types of resistor-capacitor networks are presented and used to aid the discussion.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. K. Jonscher, Dielectric Relaxation in Solids. Chelsea Dielectrics Press, London (1983).

    Google Scholar 

  2. 2.

    J. C Wang, J. Electrochem. Soc. 134, p. 1915 (1987).

    CAS  Article  Google Scholar 

  3. 3.

    S. H. Liu, Phys. Rev. 55, p. 529 (1985).

    CAS  Google Scholar 

  4. 4.

    J. C Wang, Solid State Ionics 39, p. 277 (1990).

    Article  Google Scholar 

  5. 5.

    J. C Wang and J. B. Bates, Solid State Ionics 18/19, p. 224 (1986).

    Article  Google Scholar 

  6. 6.

    L. Nyikos and T. Pajkossy, Electrochim. Acta 30, p. 1533 (1985).

    CAS  Article  Google Scholar 

  7. 7.

    J. C. Wang, Solid State Ionics 28–30, p. 1436 (1988).

    Article  Google Scholar 

  8. 8.

    T. Pajkossy and L. Nyikos, J. Electrochem. Soc. 133, p. 2061 (1986).

    CAS  Article  Google Scholar 

  9. 9.

    J. C. Wang, Electrochim. Acta 34, p. 987 (1989).

    CAS  Article  Google Scholar 

  10. 10.

    T. Kaplan, L. J. Gray, and S. H. Liu, Phys. Rev. B35, p. 5379 (1987).

    Article  Google Scholar 

  11. 11.

    P. Debye, Polar Molecules. Dover, New York (1929).

    Google Scholar 

  12. 12.

    J. C Anderson, Dielectrics. Reinhold, New York, p. 67 (1964).

    Google Scholar 

  13. 13.

    S. Havriliak and S. Negami, Polymer 8, p. 161 (1967).

    CAS  Article  Google Scholar 

  14. 14.

    C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization. Elsevier, Amsterdam (1978).

    Google Scholar 

  15. 15.

    J. C. Wang and J. B. Bates, Mat. Res. Soc. Symp. Proc. 135, p. 57 (1989).

    CAS  Article  Google Scholar 

  16. 16.

    J. C. Wang and J. B. Bates, Solid State Ionics 50, p. 75 (1992).

    CAS  Article  Google Scholar 

  17. 17.

    G. H. Vineyard, J. Phys. Chem. Solids 3, p. 121 (1957).

    CAS  Article  Google Scholar 

  18. 18.

    J. M. Wimmer and N. M. Tallan, J. Appl. Phys. 37, p. 3728 (1966).

    CAS  Article  Google Scholar 

  19. 19.

    E. Warburg, Ann. Phys. 6, p. 125 (1901).

    CAS  Article  Google Scholar 

  20. 20.

    J. B. Bates and J. C. Wang, Solid State Inoics 28–30, p. 115 (1988).

    Article  Google Scholar 

  21. 21.

    J. C. Wang, Electrochim. Acta 38, p. 2111 (1993).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J. C. Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, J.C. Non-Debye and CPA Behaviors of Ionic Materials. MRS Online Proceedings Library 500, 261 (1997).

Download citation