Abstract
Non-Debye and constant-phase-angle (CPA) behaviors associated with the bulk and interfacial processes involving ionic materials are discussed in terms of complex impedance, admittance, and dielectric spectra. The yielding of a CPA and/or a broad non-Debye dielectric loss peak in a spectrum from fractal, pore, and ion-hopping models are compared and reviewed. The observed wide frequency ranges of the CPA behavior suggest that the fractal and pore models, which require a wide range of special structures down to very fine scales, may not be realistic. The ion-hopping model treats the bulk and interfacial processes as a chemical reaction having a thermally-activated Arrhenius form. Because of thermal fluctuations, the activation energies for ion hopping (e.g., in a potential double-well) have a double-exponential distribution which yields a non-Debye dielectric loss peak and a CPA spectrum over a wide frequency range above the loss peak. The distribution also has a special temperature dependence which may explain the invariance of dielectric spectral shapes with temperature, an observation by Joscher. The construction of CPA elements (in a generalized Warburg impedance form) using three distinct types of resistor-capacitor networks are presented and used to aid the discussion.
This is a preview of subscription content, access via your institution.
References
- 1.
A. K. Jonscher, Dielectric Relaxation in Solids. Chelsea Dielectrics Press, London (1983).
- 2.
J. C Wang, J. Electrochem. Soc. 134, p. 1915 (1987).
- 3.
S. H. Liu, Phys. Rev. 55, p. 529 (1985).
- 4.
J. C Wang, Solid State Ionics 39, p. 277 (1990).
- 5.
J. C Wang and J. B. Bates, Solid State Ionics 18/19, p. 224 (1986).
- 6.
L. Nyikos and T. Pajkossy, Electrochim. Acta 30, p. 1533 (1985).
- 7.
J. C. Wang, Solid State Ionics 28–30, p. 1436 (1988).
- 8.
T. Pajkossy and L. Nyikos, J. Electrochem. Soc. 133, p. 2061 (1986).
- 9.
J. C. Wang, Electrochim. Acta 34, p. 987 (1989).
- 10.
T. Kaplan, L. J. Gray, and S. H. Liu, Phys. Rev. B35, p. 5379 (1987).
- 11.
P. Debye, Polar Molecules. Dover, New York (1929).
- 12.
J. C Anderson, Dielectrics. Reinhold, New York, p. 67 (1964).
- 13.
S. Havriliak and S. Negami, Polymer 8, p. 161 (1967).
- 14.
C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization. Elsevier, Amsterdam (1978).
- 15.
J. C. Wang and J. B. Bates, Mat. Res. Soc. Symp. Proc. 135, p. 57 (1989).
- 16.
J. C. Wang and J. B. Bates, Solid State Ionics 50, p. 75 (1992).
- 17.
G. H. Vineyard, J. Phys. Chem. Solids 3, p. 121 (1957).
- 18.
J. M. Wimmer and N. M. Tallan, J. Appl. Phys. 37, p. 3728 (1966).
- 19.
E. Warburg, Ann. Phys. 6, p. 125 (1901).
- 20.
J. B. Bates and J. C. Wang, Solid State Inoics 28–30, p. 115 (1988).
- 21.
J. C. Wang, Electrochim. Acta 38, p. 2111 (1993).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, J.C. Non-Debye and CPA Behaviors of Ionic Materials. MRS Online Proceedings Library 500, 261 (1997). https://doi.org/10.1557/PROC-500-261
Published: