Skip to main content
Log in

Non-Debye and CPA Behaviors of Ionic Materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Non-Debye and constant-phase-angle (CPA) behaviors associated with the bulk and interfacial processes involving ionic materials are discussed in terms of complex impedance, admittance, and dielectric spectra. The yielding of a CPA and/or a broad non-Debye dielectric loss peak in a spectrum from fractal, pore, and ion-hopping models are compared and reviewed. The observed wide frequency ranges of the CPA behavior suggest that the fractal and pore models, which require a wide range of special structures down to very fine scales, may not be realistic. The ion-hopping model treats the bulk and interfacial processes as a chemical reaction having a thermally-activated Arrhenius form. Because of thermal fluctuations, the activation energies for ion hopping (e.g., in a potential double-well) have a double-exponential distribution which yields a non-Debye dielectric loss peak and a CPA spectrum over a wide frequency range above the loss peak. The distribution also has a special temperature dependence which may explain the invariance of dielectric spectral shapes with temperature, an observation by Joscher. The construction of CPA elements (in a generalized Warburg impedance form) using three distinct types of resistor-capacitor networks are presented and used to aid the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Jonscher, Dielectric Relaxation in Solids. Chelsea Dielectrics Press, London (1983).

    Google Scholar 

  2. J. C Wang, J. Electrochem. Soc. 134, p. 1915 (1987).

    Article  CAS  Google Scholar 

  3. S. H. Liu, Phys. Rev. 55, p. 529 (1985).

    CAS  Google Scholar 

  4. J. C Wang, Solid State Ionics 39, p. 277 (1990).

    Article  Google Scholar 

  5. J. C Wang and J. B. Bates, Solid State Ionics 18/19, p. 224 (1986).

    Article  Google Scholar 

  6. L. Nyikos and T. Pajkossy, Electrochim. Acta 30, p. 1533 (1985).

    Article  CAS  Google Scholar 

  7. J. C. Wang, Solid State Ionics 28–30, p. 1436 (1988).

    Article  Google Scholar 

  8. T. Pajkossy and L. Nyikos, J. Electrochem. Soc. 133, p. 2061 (1986).

    Article  CAS  Google Scholar 

  9. J. C. Wang, Electrochim. Acta 34, p. 987 (1989).

    Article  CAS  Google Scholar 

  10. T. Kaplan, L. J. Gray, and S. H. Liu, Phys. Rev. B35, p. 5379 (1987).

    Article  Google Scholar 

  11. P. Debye, Polar Molecules. Dover, New York (1929).

    Google Scholar 

  12. J. C Anderson, Dielectrics. Reinhold, New York, p. 67 (1964).

    Google Scholar 

  13. S. Havriliak and S. Negami, Polymer 8, p. 161 (1967).

    Article  CAS  Google Scholar 

  14. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization. Elsevier, Amsterdam (1978).

    Google Scholar 

  15. J. C. Wang and J. B. Bates, Mat. Res. Soc. Symp. Proc. 135, p. 57 (1989).

    Article  CAS  Google Scholar 

  16. J. C. Wang and J. B. Bates, Solid State Ionics 50, p. 75 (1992).

    Article  CAS  Google Scholar 

  17. G. H. Vineyard, J. Phys. Chem. Solids 3, p. 121 (1957).

    Article  CAS  Google Scholar 

  18. J. M. Wimmer and N. M. Tallan, J. Appl. Phys. 37, p. 3728 (1966).

    Article  CAS  Google Scholar 

  19. E. Warburg, Ann. Phys. 6, p. 125 (1901).

    Article  CAS  Google Scholar 

  20. J. B. Bates and J. C. Wang, Solid State Inoics 28–30, p. 115 (1988).

    Article  Google Scholar 

  21. J. C. Wang, Electrochim. Acta 38, p. 2111 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J.C. Non-Debye and CPA Behaviors of Ionic Materials. MRS Online Proceedings Library 500, 261 (1997). https://doi.org/10.1557/PROC-500-261

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-500-261

Navigation