Application of Broad-Band Dielectric Spectroscopy for Investigations of Liquid Crystal - Porous Media Microcomposites

Abstract

We applied ultra broad-band dielectric spectroscopy in the frequency range from 10–3 Hz to 109 Hz to investigate the effect of size, shape and volume fraction of the pores in the porous matrices on the dielectric properties of liquid crystals (LC) dispersed in these matrices. Measurements in such a broad frequency range make it possible to obtain detailed information on the important aspects of the electrical behavior of heterogeneous materials such as: conductivity, surface polarization, and influence of confinement on dynamics of molecular motion of polar molecules forming LC. We investigated alkylcyanobiphenyls in the isotropie, nematic and smectic phases dispersed in porous glasses (average pore sizes - 100 Å and 1000 Å) which have randomly oriented, interconnected pores, and anopore membranes (pore diameters - 200 Å and 2000 Å) with parallel cylindrical pores. Dispersion of LC resulted in qualitative changes of their dielectric properties. Analysis of broad-band dielectric spectra shows that in organic (LC) - inorganic (porous matrix) heterogeneous composites conductivity plays an important role at F <1 Hz. We observe the appearance of new dielectric modes: a very slow process with characteristic frequency ≃ (1–10) Hz and a second process in frequency range about (103 - 106) Hz. The slow process arises due to the relaxation of interfacial polarization at pore wall - LC interface. The origin of this could be due to absorption of ions at the interface. Another possibility is the preferential orientation of the permanent dipoles at pore surface. The second new mode is due to the hindered rotation of the molecules near the interface. Additionally we observed two bulk like modes due to the rotation of the molecules around their short and long axii which are modified.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R. Hilfer, Phys. Rev. B 44, p. 60 (1991).

    CAS  Article  Google Scholar 

  2. 2.

    F.M. Aliev, M.N. Breganov, Sov. Phys. JETP 68, p. 70 (1989).

    Google Scholar 

  3. 3.

    J. Schuller, Yu.B. Mel’nichenko, R. Richert, and E.W. Fischer, Phys. Rev. Lett. 73, p. 2224 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    M. Arndt and F. Kremer in: Dynamics in Small Confining Systems II, edited by J.M. Drake, J. Klafter, R. Kopelman, S.M. Troian, (Mater. Res. Soc. Proc. 363, Pittsburgh, PA1995), pp. 259–263.

    Google Scholar 

  5. 5.

    Yu. Mel’nichenko, J. Schuller, R. Richert, B. Ewen and C-K. Loong, J. Chem. Phys. 103, p. 2016 (1995).

    Article  Google Scholar 

  6. 6.

    J. Schuller, R. Richert, E.W. Fischer, Phys. Rev. B 52, 15232 (1995).

    CAS  Article  Google Scholar 

  7. 7.

    M. Arndt, R. Stannarius, W. Gorbatschow, and F. Kremer, Phys. Rev. E 54, 5377 (1996).

    CAS  Google Scholar 

  8. 8.

    F.M. Aliev and G.P. Sinha in: Electrically based Microstructural Characterization, edited by R.A. Gerhardt, S.R. Taylor, and E.J. Garboczi (Mater. Res. Soc. Proc. 411, Pittsburgh, PA 1996), pp. 413–418.

    CAS  Google Scholar 

  9. 9.

    S.R. Rozanski, R. Stanarius, H. Groothues, and F. Kremer, Liquid Crystals 20, p. 59 (1996).

    Article  Google Scholar 

  10. 10.

    G.P. Sinha and F.M. Aliev, MCLC 304, p. 309 (1997).

    CAS  Google Scholar 

  11. 11.

    G.P. Sinha and F.M. Aliev in: Dynamics in Small Confining Systems III, edited by J.M. Drake, J. Klafter and R. Kopelman (Mater. Res. Soc. Proc. 464, Pittsburgh, PA 1997), pp. 195–200.

    CAS  Google Scholar 

  12. 12.

    P.G. Cummins, D.A. Danmur, and D.A. Laidler, MCLC 30, p. 109 (1975).

    CAS  Google Scholar 

  13. 13.

    D. Lippens, J.P. Parneix, and A. Chapoton, J. de Phys. 38, p. 1465 (1977).

    CAS  Article  Google Scholar 

  14. 14.

    J.M. Wacrenier, C. Druon, and D. Lippens, Molec. Phys. 43, p. 97 (1981).

    CAS  Article  Google Scholar 

  15. 15.

    T.K. Bose, R. Chahine, M. Merabet, and J. Thoen, J. de Phys. 45, p. 11329 (1984).

    Article  Google Scholar 

  16. 16.

    T. K. Bose, B. Campbell, S. Yagihara, and J. Thoen, Phys. Rew. A 36, p. 5767 (1987).

    CAS  Article  Google Scholar 

  17. 17.

    S. Havriliak and S. Negami, Polymer 8, p. 101 (1967).

    Article  Google Scholar 

  18. 18.

    B.K.P. Scaife, Principles of Dielectrics, (Clarendon Press, Oxford, 1989).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. P. Sinha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sinha, G.P., Batalla, B. & Aliev, F.M. Application of Broad-Band Dielectric Spectroscopy for Investigations of Liquid Crystal - Porous Media Microcomposites. MRS Online Proceedings Library 500, 151 (1997). https://doi.org/10.1557/PROC-500-151

Download citation