Skip to main content
Log in

Recent Progress in Implantation and Annealing of GaN and AlGaN

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Heterostructure modulation doped transistors (MODFETs) based on AlGaN/GaN structures have demonstrated impressive DC and microwave performance often despite high transistor access resistance. One approach to reducing the access resistance is to use selective area Si-implantation. While several reports exist on Si-implantation in GaN, little work has been done on implantation in AlGaN. In addition, more information on the annealing of implantation damage in GaN is needed to optimize its use in FETs and thyristors.

We report the electrical and structural properties of Si-implanted Al0.15Ga0.85N based on Hall measurements and Rutherford Backscattering (RBS) spectra, respectively. Al0.15Ga0.85N shows less damage accumulation than GaN for a room temperature Si-implant dose of 5×1015 cm−2 based on the minimum channeling yield (26% for AlGaN as compared to 34% for GaN), however, as with GaN, this damage is difficult to remove by thermal annealing at °C.

We also report on high pressure (up to 15 kbar) and high temperature (up to 1500 °C) annealing for Si-implanted GaN. At 1250 °C ~50% electrical activation is achieved which increases to ~90% at 1500 °C. The photoluminescence of these samples is also restored, or even enhanced, by the high temperature treatments. Furthermore, RBS demonstrates that complete removal of the implantation induced damage is achieved for the 1500 °C anneal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. 63, 1214 (1993).

    Article  CAS  Google Scholar 

  2. S. C. Binari, L. B. Rowland, W. Kruppa, G. Kelner, K. Doverspike, and D. K. Gaskill, Elect. Lett. 30, 1248 (1994).

    Article  CAS  Google Scholar 

  3. N. X. Nguyen, B. P. Keller, S. Keller, Y.-F. Wu, M. Lee, C. Nguyen, S. P. Denbaars, U. K. Mishra, and D. Grider, Electron. Lett. 33, 334 (1997).

    Article  CAS  Google Scholar 

  4. J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys. Lett. 68 2273 (1996).

    Article  CAS  Google Scholar 

  5. J. C. Zolper, S. J. Pearton, J. S. Williams, H. H. Tan, and R. A. Stall, Materials Research Society, Fall 1996, Symposium N, vol. 449 (MRS, Pittsburgh, PA, in press).

  6. J. C. Zolper and R. J. Shul, MRS Bulletin, 22, 36 (1997).

    Article  CAS  Google Scholar 

  7. S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. C. Zolper, C. Yuan, R. A. Stall, Appl. Phys. Lett. 67, 1435 (1995).

    Article  CAS  Google Scholar 

  8. J. C. Zolper, M. Hagerott Crawford, S. J. Pearton, C. R. Abernathy, C. B. Vartuli, C. Yuan, and R. A. Stall, J. Electron. Mat. 25 839 (1996).

    Article  CAS  Google Scholar 

  9. J. C. Zolper, R. G. Wilson, S. J. Pearton, and R. A. Stall, Appl. Phys. Lett. 68 1945 (1996).

    Article  CAS  Google Scholar 

  10. H. H. Tan, C. Jagadish, J. S. Williams, J. Zoa, D. J. H. Cockayne, and A. Sikorski, J. Appl. Phys. 77, 87 (1995).

    Article  CAS  Google Scholar 

  11. J. C. Zolper, J. Han, R. Biefeld, S. J. Pearton, J. S. Williams, H. H. Tan, and R. F. Karlicek, Materials Research Society, San Francisco, CA, March 31- April 4, 1997 (in press).

    Google Scholar 

Download references

Acknowledgments

This work was performed while the lead author (JCZ) was with Sandia National Laboratories. The authors gratefully acknowledge the technical support of J. A. Avery at Sandia. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract #DE-ACO4-94AL85000. The work at UF is partially supported by a National Science Foundation grant (DMR-9421109) and a University Research Initiative grant from ONR (N00014-92-51895). Additional support for the work at Sandia and UF was provided from DARPA (A. Husain) and administered by AFOSR (G. L. Witt). This article is prepared by a U. S. Government employee. Pursuant to Title 17, U. S. Code Section 05, it is not subject to copyright. Approved for public release, distribution unlimited.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolper, J.C., Han, J., Van Deusen, S.B. et al. Recent Progress in Implantation and Annealing of GaN and AlGaN. MRS Online Proceedings Library 482, 975–980 (1997). https://doi.org/10.1557/PROC-482-979

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-482-979

Navigation