GaN Device Processing


Recent progress in the development of dry and wet etching techniques, implant doping and isolation, thermal processing, gate insulator technology and high reliability contacts is reviewed. Etch selectivities up to 10 for InN over AIN are possible in Inductively Coupled Plasmas using a Cl2/Ar chemistry, but in general selectivities for each binary nitride relative to each other are low (≤2)b ecause of the high ion energies needed to initiate etching. Improved ntype ohmic contact resistances are obtained by selective area Si+ implantation followed by very high temperature (>1300°C) anneals in which the thermal budget is minimized and AIN encapsulation prevents GaN surface decomposition. Implant isolation is effective in GaN, AlGaN and AlInN, but marginal in InGaN. Candidate gate insulators for GaN include AIN, A1ON and Ga(Gd)Ox, but interface state densities are still to high to realize state-of-the-art MIS devices.

This is a preview of subscription content, access via your institution.


  1. 1.

    see for example GaN and Related Materials, ed. S.J. Pearton (Gordon and Breach, NY 1997) and GaN, ed. J.I. Pankove and T.D. Moustakas (Academic Press, San Diego 1998), and references therein.

    Google Scholar 

  2. 2.

    M.G. Craford, presented at IUVSTA Workshop on GaN, Hawaii, August 1997.0

  3. 3.

    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto and H. Kikoyu, Jap. Appl. Phys. Lett. 36 L1059 (1997).

    Article  Google Scholar 

  4. 4.

    S. Nakamura, IEEE J. Selective Topics in Quantum Electron. 3 435 (1997).

    CAS  Article  Google Scholar 

  5. 5.

    S. Nakamura, presented at 3rdIntl. GaN Conference, Tokushima, Japan, October 1997.

  6. 6.

    R.J. Shul, Mat. Res. Soc. Bulletin 22 36 (1997).

    Google Scholar 

  7. 7.

    S.J. Pearton and R.J. Shul, in GaN, ed. J.I. Pankove and T.D. Moustakas (Academic Press, San Diego 1998).

  8. 8.

    R.J. Shul, in GaN and Related Materials, ed. S.J. Pearton (Gordon and Breach, NY 1997).

  9. 9.

    R.J. Shul, C.G. Willison, M.M. Bridges, J. Han, J.W. Lee, S.J. Pearton, C.R. Abernathy, J.D. MacKenzie, S.M. Donovan, L. Zhang and L.F. Lester, J. Vac. Sci. Technol. A. (in press).

  10. 10.

    R.J. Shul, C.T. Sullivan, M.B. Snipes, G.B. McClellan, M. Hatich, C.T. Fuller, C. Constantine, J.W. Lee and S.J. Pearton, Solid State Electron. 38 2047 (1997).

    Article  Google Scholar 

  11. 11.

    S.J. Pearton, W.S. Hobson, C.R. Abernathy and C. Constantine, J. Mater. Sci. - Mater. Electron. 5 185 (1994).

    CAS  Article  Google Scholar 

  12. 12.

    C.R. Eddy Jr., L.J. Glembocki, D. Leonhardt, V.A. Shamanian, R.T. Holm, B.D. Holms, J.E. Butler and S.W. Pang, J. Electron. Mater. 26 1320 (1997).

    CAS  Article  Google Scholar 

  13. 13.

    Y.H. Lee, H.S. Kim, Y.S. Kwan, G.Y. Yeom, J.W. Lee, M.C. Yoo and T.I. Kim, J. Vac. Sci. Technol. A. (in press).

  14. 14.

    F. Ren, S.J. Pearton, R.J. Shul and J. Han, J. Electron. Mater. (in press).

  15. 15.

    C.B. Vartuli, S.J. Pearton, J.W. Lee, C.R. Abernathy, J.D. MacKenzie, J.C. Zolper, R.J. Shul and F. Ren, J. Electrochem. Soc. 143 3681 (1996).

    CAS  Article  Google Scholar 

  16. 16.

    C. Youtsey, I. Adesida and G. Bulman, Electron. Lett. 33 245 (1997); Appl. Phys. Lett. 71 2151 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    J.C. Zolper in GaN and Related Materials, ed. S.J. Pearton (Gordon and Breach, NY 1997).

  18. 18.

    H.H. Tan, J.S. Williams, J. Zou, D.J.H. Cockayne, S.J. Pearton and R.A. Stall, Appl. Phys. Lett. 69 2364 (1996).

    CAS  Article  Google Scholar 

  19. 19.

    J. Hong, J.W. Lee, J.D. MacKenzie, S.M. Donovan, C.R. Abernathy, S.T. Pearton and J.C. Zolper, Sernicond. Sci. Technol. 12 1310 (1997).

    CAS  Article  Google Scholar 

  20. 20.

    S.J. Pearton and A. Katz, Mat. Sci. Eng. B18 153 (1993).

    CAS  Article  Google Scholar 

  21. 21.

    J.C. Zolper, A.G. Baca, R.J. Shul, R.G. Wilson, S.J. Pearton and R.A. Stall, Appl. Phys. Lett. 68 166 (1996).

    Google Scholar 

  22. 22.

    S.J. Pearton, C.B. Vartuli, J.C. Zolper, C. Yuan and R.A. Stall, Appl. Phys. Lett. 67 1435 (1995).

    CAS  Article  Google Scholar 

  23. 23.

    J.C. Zolper, D.J. Rieger, A.G. Baca, S.J. Pearton, J.W. Lee and R.A. Stall, Appl. Phys. Lett. 69 538 (1996).

    CAS  Article  Google Scholar 

  24. 24.

    O. Aubacher, M.S. Brandt, R. Dimitrov, T. Metzger, M. Stutzmann, R. Fischer, A. Miebr, A. Bergmaier and G. Dollinger, J. Vac. Sci. Technol. B14 3532 (1996).

    Article  Google Scholar 

  25. 25.

    G. Harrington, Y. Hsin, Q.Z. Liu, P.M. Ashcek, S.S. Lau, M.A. Khan, J.W. Yang and Q. Chen, Electron. Lett. (in press).

  26. 26.

    Q.Z. Liu, L.S. Yu, K.V. Smith, F. Deng, C.W. Tu, P.M. Asbeck, E.T. Yu and S.S. Lau, Proc. ECS Symp. GaN and Related Materials, Paris, October 1997.

  27. 27.

    Z. Fan, S. Mohammad, W. Kim, O. Aktas, A.E. Botchkarev and H. Morkoc, Appl. Phys. Lett. 68 1672 (1996).

    CAS  Article  Google Scholar 

  28. 28.

    M.W. Cole, F. Ren and S.J. Pearton, J. Electrochem. Soc. 144 L275 (1997).

    CAS  Article  Google Scholar 

  29. 29.

    M. Murakami, Y. Koide, T. Oku, H. Mori and C.J. Uchibori, Proc. 27th SOTAPOCS Conf., ECS Proc. Vol. 97–21 (1997).

  30. 30.

    F. Ren, Solid State Electron. (in press).

Download references


The work at UF is partially supported by a DARPA/EPRI grant (E.R. Brown/ J. Melcher), while that at Sandia is supported by DOE grant DE AC04-85000. Sandia is operated by Sandia Corporation as a multi-program laboratory for Lockheed-Martin.

Author information



Corresponding author

Correspondence to S.J. Pearton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pearton, S., Ren, F., Zolper, J. et al. GaN Device Processing. MRS Online Proceedings Library 482, 957–968 (1997).

Download citation