Deep Trap Characterization in GaN Using Thermal and Optical Admittance Spectroscopy

Abstract

Deep defect levels and the optical as well as thermal transitions of carriers from the levels into the corresponding bands were analyzed using Thermal and Optical Admittance Spectroscopy. High resistivity GaN-layers grown by MBE and heterostructures consisting of n-type GaN-layers grown with Low Pressure Chemical Vapor Deposition on 6H-SiC substrates are investigated. In the MBE-grown GaN layers we determine deep electron traps with thermal activation energies of EA=(0.45±0.04)eV and EA=(0.65±0.03)eV. Furthermore, three different kinds of optical transitions were distinguished by Optical Admittance Spectroscopy: near band gap transitions including the transition between the valence band and a shallow donor 50meV below the conduction band, a peak at 2.1eV associated with the yellow photoluminescence band and various deep level-band transitions in the infrared region.

The high sensitivity of the TAS to interface defect states was used to investigate GaN/SiC heterostructures. We found an interface defect state at 70 … 90meV. Furthermore, one level was obtained originating from the epitaxial GaN-layer having an activation energy of 63±3meV. A defect distribution was identified in the p-type SiC-substrate with activation energies between 160meV and 180meV.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Topf, D. Meister, I. Dirnstorfer, G. Steude, S. Fischer, B.K. Meyer, A. Krtschil, H. Witte, J. Christen, T.U. Kampen, W. Mönch: Proc. E-MRS'97 and ICAM'97, 1997, Strasbourg, France

  2. [2]

    J. Barbolla, S. Duenas, L. Bailon: Sol. State Electron. 35 (1992) 3, 285

    Article  Google Scholar 

  3. [3]

    W. Götz, N.M. Johnson, R.A. Street, H. Amano, I. Akasaki: Appl.Phys.Lett. 66 (1995), 1340

    Article  Google Scholar 

  4. [4]

    W.I. Lee, T.C. huang, J.D. Guo, M.S. Feng: Appl. Phys. Lett. 67 (1995) 12, 1721

    Google Scholar 

  5. [5]

    B-C. Chung, M. Gershenzon: J. Appl. Phys. 72 (1992), p. 651

    CAS  Article  Google Scholar 

  6. [6]

    B. Monemar: Phys. Rev. B 10 (1974), p.676

    CAS  Article  Google Scholar 

  7. [7]

    P. Hacke, H. Okushi: Appl. Phys. Lett. 71 (1997) 4, 524

    Article  Google Scholar 

  8. [8]

    D.C. Look: Proceed. DRIP VII, 1997, Templin, Germany

    Google Scholar 

  9. [9]

    D.M. Hoffmann, D. Kovalev, G. Steude, B.K. Meyer, A. Hoffmann, L. Eckey, R. Heitz, T. Detchprohm, H. Amano, I. Akasaki: Phys. Rev. B 52 (1995), p.16702

    Article  Google Scholar 

  10. [10]

    D. Haase, M. Schmidt, W. Kürner, A. Dörnen, V. Härle, F. Scholz, M. Burkard, H. Schweizer: Appl. Phys. Lett. 69 (1996) 17, 2525

    Article  Google Scholar 

  11. [11]

    P. Hacke, H. Nakayama, T. Detchprohm, K. Hiramatsu, N. Sawaki: Appl. Phys. Lett. 68 (1996) 19, 1362

    Article  Google Scholar 

  12. [12]

    W. Götz, N.M. Johnson, H. Amano, I. Akasaki: Appl. Phys. Lett. 65 (1994) 4, 463

    Article  Google Scholar 

  13. [13]

    P. Krispin: Appl. Phys. Lett. 70 (1997), p. 1432

    CAS  Article  Google Scholar 

  14. [14]

    N.I. Kuznetsov, A.E. Gubenco, A.E. Nikolaev, Yu. V. Melnik, M.N. Blashenkov, I.P. Nikitina, V.A. Dmitriev: Mater. Sci. Engineering B46 (1997) 74–78

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Deutsche Forschungsgemeinschaft contract number WI 1619/1-1-130/97, by the Kultusministerium Sachsen-Anhalt contract number 002KD1997 and by the Volkswagen-Stiftung contract number 1/71432.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Krtschil.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Krtschil, A., Wttte, H., Lisker, M. et al. Deep Trap Characterization in GaN Using Thermal and Optical Admittance Spectroscopy. MRS Online Proceedings Library 482, 892–897 (1997). https://doi.org/10.1557/PROC-482-887

Download citation