Constant Pressure First-Principles Molecular Dynamics Study on Bn, AIN, and GaN

Abstract

We have performed first-principles total energy calculations to obtain various physical parameters for both zinc-blende and wurtzite BN, AIN, and GaN. The calculation has been done within the local density approximation to the density functional theory together with plane wave expansion and norm-conserving pseudopotentials. Constant-pressure first-principles molecular dynamics method has been used to relax the unit cell shape and the atomic geometry. In calculating the elastic constants and the deformation potentials, the internal displacement of atoms in the strained crystal is simulated by moving atoms with first-principles molecular dynamics method. The optical phonon frequencies at the Brillouin zone center except for LO phonons are calculated within harmonic approximation by calculating the forces acting on atoms which are displaced from equilibrium positions according to the symmetry of each mode.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. Suzuki and T. Uenoyama, J. Appl. Phys. 80, 6868 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    K. Kim, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 53, 16310 (1996).

    CAS  Article  Google Scholar 

  3. 3.

    K. Kim, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 56, 7363 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    J.A. Majewski, S. Stadele, and P. Vogl, MRS Internet J. Nitride Semicond. Res. 1, 30 (1996).

    Article  Google Scholar 

  5. 5.

    A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino, and S. Nakamura, J. Appl. Phys. 81, 417 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  7. 7.

    W. Kohn and L. J. Sham, Phys. Rev. 140, A864 (1965).

    Article  Google Scholar 

  8. 8.

    N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    L. Kleinman and D.M. Bylander, Phys. Rev. Letters 48, 1425 (1982).

    CAS  Article  Google Scholar 

  10. 10.

    D.M. Ceperley and B.J. Alder, Phys. Rev. Letters 45, 566 (1980).

    CAS  Article  Google Scholar 

  11. 11.

    J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    CAS  Article  Google Scholar 

  12. 12.

    D.J. Chadi and M.L. Cohen, Phys. Rev. B 8, 5747 (1973).

    Article  Google Scholar 

  13. 13.

    F.D. Murnaghan, Proc. Nat. Acad. Sci. U.S.A. 50, 697 (1944).

  14. 14.

    R.M. Wentzeovitch, J.L. Martins, and G.D. Price, Phys. Rev. Letters 70, 3947 (1993).

    Article  Google Scholar 

  15. 15.

    O.H. Nielsen and R.M. Martin, Phys. Rev. B 32, 3792 (1985).

    CAS  Article  Google Scholar 

  16. 16.

    G.L. Bir and G.E. Pikus, in Symmetry and Strain-induced Effects in Semiconductors (Wiley, New York, 1974), p. 311, p. 330.

    Google Scholar 

  17. 17.

    K. Kim, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 56, 7018 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    A.F. Wright, J. Appl. Phys. 82, 2833 (1997).

    CAS  Article  Google Scholar 

  19. 19.

    L.E. McNeil, M. Grimsditch, and R.H. French, J. Am. Cera,,%. Soc. 76, 1132 (1993).

    CAS  Article  Google Scholar 

  20. 20.

    M. Yamaguchi, T. Yagi, T. Azuhata, T. Sota, K. Suzuki, S. Chichibu, and S. Nakamura, J. Phys.: Condens. Matter 9, 241 (1997).

    CAS  Google Scholar 

  21. 21.

    A. Polian, M. Grimsditch, and I. Grzegory, J. Appl. Phys. 79, 3343 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    R.B. Schwarz, K. Khachaturyan, and E.R. Weber, Appl. Phys. Lett. 70, 1122 (1997).

    CAS  Article  Google Scholar 

  23. 23.

    K. Miwa and A. Fukumoto, Phys. Rev. B 48, 7897 (1993).

    CAS  Article  Google Scholar 

  24. 24.

    I. Gorczyca, N.E. Christensen, E.L. Peltzer y Blancá, and C.O. Rodriguez, Phys. Rev. B 51, 11936 (1995).

    CAS  Article  Google Scholar 

  25. 25.

    T. Soma, A. Sawaoka, and S. Saito, Mat. Res. Bull. 9, 755 (1974).

    CAS  Article  Google Scholar 

  26. 26.

    I. Petrov, E. Mojab, R.C. Powell, J.E. Greene, L. Hultman, and J.-E. Sundgren, Appl. Phys. Lett. 60, 2491 (1992).

    CAS  Article  Google Scholar 

  27. 27.

    M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, K. Pakula, J.M. Baranowski, C.T. Foxon, and T.S. Cheng, Appl. Phys. Lett. 69, 73 (1996).

    CAS  Article  Google Scholar 

  28. 28.

    H. Schulz and K.H. Thiemann, Solid State Commun. 23, 815 (1977).

    CAS  Article  Google Scholar 

  29. 29.

    M. Grimsditch, E.S. Zouboulis, and A. Polian, J. Appl. Phys. 76, 832 (1994).

    CAS  Article  Google Scholar 

  30. 30.

    R. Dingle, D.D. Sell, S.E. Stokowski, and M. Ilegems, Phys. Rev. B 4, 1211 (1971).

    Article  Google Scholar 

  31. 31.

    B. Gil, O. Briot, and R.-L. Aulombard, Phys. Rev. B 52, R17028 (1995).

    Article  Google Scholar 

  32. 32.

    G.L. Doll, in Properties of Group III Nitrides. Edited by J. H. Edger, Electronic Materials Information Service (EMIS) Datareviews Series (Institution of Electrical Engineers, London, 1994), p. 243.

    Google Scholar 

  33. 33.

    A.D. Alvarenga, M. Grimsditch, and A. Polian, J. Appl. Phys. 72, 1955 (1992).

    CAS  Article  Google Scholar 

  34. 34.

    S. Murugkar, R. Merlin, T. Lei, and T.D. Moustakas, Bull. Am. Phys. Soc. 37, 556 (1992).

    Google Scholar 

  35. 35.

    A. Tabata, R. Enderlein, J.R. Leite, S.W. da Silva, J.C. Galzerani, D. Schikora, M. Kloidt, and K. Lischka, J. Appl. Phys. 79, 4137 (1996).

    CAS  Article  Google Scholar 

  36. 36.

    H. Siegle, L. Eckey, A. Hoffmann, C. Thomsen, B.K. Meyer, D. Schikora, M. Hankeln, and K. Lischka, Solid State Commun. 96, 943 (1995).

    CAS  Article  Google Scholar 

  37. 37.

    P. Perlin, A. Polian, and T. Suski, Phys. Rev. B 47, 2874 (1993).

    CAS  Article  Google Scholar 

  38. 38.

    L.E. McNeil, M. Grimsditch, and R.H. French, J. Am. Ceram. Soc. 76, 1132 (1993).

    CAS  Article  Google Scholar 

  39. 39.

    J. Nakahara, T. Kuroda, H. Amano, I. Akasaki, S. Minomura, and I. Grzegory, in Ninth Symposium Record of Alloy Semiconductor Physics and Electronics (Izunagaoka, Japan, 1990), p. 391.

  40. 40.

    P. Perlin, C. Jauberthie-Carillon, J.P. Itie, A. San Miguel, I. Grzegory, and A. Polian, Phys. Rev. B 45, 83 (1992).

    CAS  Article  Google Scholar 

  41. 41.

    T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura, J. Phys.: Condens. Matter 7, L129 (1995).

    CAS  Google Scholar 

Download references

Acknowledgments

The computation in this work has been done using the facilities of the Supercomputer Center, Institute for Solid State Physics, University of Tokyo. This work was supported in part by the Ministry of Education, Science, Sports and Culture of Japan (Grant No. 08874026 and High-Tech Research Center Project).

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Shimada.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shimada, K., Sota, T. & Suzuki, K. Constant Pressure First-Principles Molecular Dynamics Study on Bn, AIN, and GaN. MRS Online Proceedings Library 482, 874–879 (1997). https://doi.org/10.1557/PROC-482-869

Download citation