Nitridation of Sapphire Substrate Using Remote Plasma Enhanced-Ultrahigh Vacuum Chemical Vapor Deposition At Low Temperature


A remote plasma enhanced-ultrahigh vacuum chemical vapor deposition (RPE-UHVCVD) system equipped with a radio frequency-inductively coupled plasma (RF-ICP) which produces the reactive nitrogen species was employed to study the nitridation process at low temperature. The sapphire surface nitridated under various conditions was investigated with x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The nitridation process seems to be mostly affected by the RF power even at low temperature since the intensity of the Nis peak was not dependent on the substrate temperature but on the RF power. The AFM images showed that the protrusion density on the sapphire surface decreased rapidly when the nitridation temperature was decreased. This result suggests that the formation of the protrusions is closely related to the process temperature, indicating that the formation of such protrusions is caused by the change of an elastic strain energy due to the thermal stress. It was possible to nitridate the sapphire surface without protrusion at a very low temperature. The crystallinity of GaN grown at 450 TC was found to be much improved when the sapphire substrate was nitridated at low temperature prior to the GaN layer growth.

This is a preview of subscription content, access via your institution.


  1. 1.

    P. Vennegues, B. Beaumont, M. Vaille, and P. Gibart, J. Cryst. Growth 173, 249 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    N. Grandjean, J. Massies, and M. Leroux, Appl. Phys. Lett. 69, 2071 (1996): N. Grandjean, J. Massies, P. Vennegues, M. Laugt, and M. Leroux, Appl. Phys. Lett. 70, 643 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    S. Keller, B. P. Keller, Y.-F. Wu, B. Heying, d. Kapolnek, J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 68, 1525 (1996).

    CAS  Article  Google Scholar 

  4. 4.

    K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka, and S. Minagawa, J. Appl. Phys. 79, 3487 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    T. Suetsugu, T. Yamazaki, S. Tomabechi, K. Woda, K. Masu, K. Tsubouchi, Appl. Surf. Sci. 117/118 540 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    C. Heinlein, J. Grepstad, H. Riechert, and R. Averbeck, Materials Science and Engineering B 43, 253 (1997).

    Article  Google Scholar 

  7. 7.

    W. T. Taferner, A. Bensaoula, E. Kim, and A. Bousetta, J. of Cryst. Growth 164, 167 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    J. A. Taylor and J. W. Rabalais, J. Chem. Phys. 75 1735 (1981).

    CAS  Article  Google Scholar 

  9. 9.

    A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, J. Cryst. Growth 137, 415 (1994).

    CAS  Article  Google Scholar 

  10. 10.

    D. Y. Noh, Y. Hwu, H. K. Kim, and M. Hong, Phys. Rev. B 51, 4441 (1995).

    CAS  Article  Google Scholar 

  11. 11.

    C. Kim, and I. K. Robinson, Appl. Phys. Lett. 69, 2358 (1996).

    CAS  Article  Google Scholar 

  12. 12.

    K. Hiramatsu, T. Detchprohm, and I. Akasaki, Jpn. J. Appl. Phys. 32, 1528 (1993).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jong-Six Paek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paek, JS., Kim, KK., Lee, JM. et al. Nitridation of Sapphire Substrate Using Remote Plasma Enhanced-Ultrahigh Vacuum Chemical Vapor Deposition At Low Temperature. MRS Online Proceedings Library 482, 181–186 (1997).

Download citation