Elemental Analysis on Group-III Nitrides Using Heavy Ion ERD


Elastic recoil detection (ERD) using energetic heavy ion beams (e.g. 170 MeV 127I) is a suitable method to measure depth profiles of light and medium heavy elements in thin films. The main advantages of ERD, which makes it favorable over many other techniques for elemental analysis, is the possibility to obtain reliable and quantitative results, a sensitivity in the ppm region or a depth resolution even better than 1 nm.

ERD analysis was employed to obtain quantitative information about the aluminium content x in MBE grown AlxGa1−xN layers on Al2O3 substrates. Using this stoichiometry information and the lattice constants obtained from high resolution X-ray diffraction, Vegard’s law could be confirmed with high accuracy. Secondly, nitridation of heated Al2O3 substrates in NH3 atmosphere was investigated using high resolution ERD. A substantial nitrogen content on the surface of the substrate was detected which means a nearly complete AIN layer grown on the Al2O3 surface by a heat treatment only. Such a nitridation layer can be the base for further growth of nitrides on Al2O3 surfaces. As a third, the impurity content of group III nitrides was investigated in dependence on deposition conditions for both, MBE and MOCVD grown samples. In all samples investigated an oxygen concentration larger than 100 ppm was detected which is much higher than the intrinsic charge carrier density of these samples. In addition it is shown that the efficiency of p-doping by Mg may not only be hindered by hydrogen but also by carbon impurities.

This is a preview of subscription content, access via your institution.


  1. 1.

    J. L'Ecuyer, C. Brassard, C. Cardinal, J. Chabbal, L. Deschênes, J.P. Labrie, B. Terreault, J.G. Martel and R. St.-Jacques, J. Appl. Phys. 47 (1976) 381.

    CAS  Article  Google Scholar 

  2. 2.

    J.P. Stoquert, G. Guillaume, M. Hage-Ali, J.J. Grob, C. Ganter and P. Siffert, Nucl. Instr. and Meth. B 44 (1989) 184.

    Article  Google Scholar 

  3. 3.

    W. Assmann, J.A. Davies, G. Dollinger, J.S. Forster, H. Huber, Th. Reichelt, R. Siegele, Nucl. Instr. and Meth. B 118 (1996) 242.

    CAS  Article  Google Scholar 

  4. 4.

    A. Bergmaier, G. Dollinger, C.M. Frey, Nucl. Instr. and. Meth.B, in press.

  5. 5.

    M. Löffler, H.-J. Scheerer and H. Vonach, Nucl. Instr. and Meth. 111 (1973) 1.

    Article  Google Scholar 

  6. 6.

    G. Dollinger, Nucl. Instr. and Meth. B 79 (1993) 513.

    Article  Google Scholar 

  7. 7.

    G. Dollinger, C.M. Frey, A. Bergmaier, T. Faestermann, Nucl. Instr. and Meth. B, in press.

  8. 8.

    A. Bergmaier and G. Dollinger, Fres. J. Anal. Chem. 353 (1995) 582.

    CAS  Article  Google Scholar 

  9. 9.

    G. Dollinger, M. Boulouednine, A. Bergmaier, T. Faestermann, C.M. Frey, Nucl. Instr. and Meth. 118 (1996) 291.

    CAS  Article  Google Scholar 

  10. 10.

    Zeit. f. Physik 5 (1921) 17.

  11. 11.

    H. Angerer, D. Brunner, F. Freudenberg, O. Ambacher, M. Stutzmann, R. Höpler, T. Metzger, E. Born, G. Dollinger, A. Bergmaier, S. Karsch and H.J. Körner, Appl. Phys. Lett. 71 (1997) 1504.

    CAS  Article  Google Scholar 

  12. 12.

    K. Kim, W.R. Lambrecht and B. Segall, Phys. Rev. B 53 (1996) 16310.

    CAS  Article  Google Scholar 

  13. 13.

    A. Polian, M. Grimsditch and I. Grzegory, J. Appl. Phys. 79 (1996) 3343.

    CAS  Article  Google Scholar 

  14. 14.

    Y. Koide, H. Itoh, M.R.H. Khan, K. Hiramatu, N. Sawaki, and I. Akasaki, J. Appl. Phys. 61 (1987) 4540.

    CAS  Article  Google Scholar 

  15. 15.

    M.A. Khan, R.A. Skogman, R.G. Schulze, and M. Gershenzon, Appl. Phys. Lett. 43 (1983) 492.

    CAS  Article  Google Scholar 

  16. 16.

    K. Uchida, A. Watanabe, F. Yano, M. Koguchi, T. Tanaka, and S. Minagawa, Appl. Phys. 79 (1996) 3487.

    CAS  Article  Google Scholar 

  17. 17.

    S. Keller, B. P. Keller, Y.-F. Wu, B. Heying, D. Kapolnek, J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 68 (1996) 1525.

    CAS  Article  Google Scholar 

  18. 18.

    N. Grandjean, J. Massies, and M. Leroux, Appl. Phys. Lett. 69 (1996) 2071.

    CAS  Article  Google Scholar 

  19. 19.

    M. H. Kim, C. Sone, J. H. Yi, and E. Yoon, Appl. Phys. Lett. 71 (1996) 1228.

    Article  Google Scholar 

  20. 20.

    C. Heinlein, J. Grepstad, T. Berge, and H. Riechert, Appl. Phys. Lett. 71 (1997) 341.

    CAS  Article  Google Scholar 

  21. 21

    H. Karsch, private communication.

  22. 22

    J.F. Ziegler, J.P. Biersack and U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, New York, vol.1 (1985) p. 53.

    Google Scholar 

  23. 23.

    T.A. Tombrello, Nucl. Instr. and Meth. B 83 (1993) 508.

    CAS  Article  Google Scholar 

  24. 24.

    O. Ambacher, H. Angerer, R. Dimitrov, W. Rieger, M. Stutzmann, G. Dollinger, A. Bergmaier, phys. stat. sol. 159 (1997) 105.

    CAS  Article  Google Scholar 

  25. 25.

    H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Jap. J. Appl. Phys. 28 (1989) L2112.

    CAS  Article  Google Scholar 

  26. 26.

    S. Nakamura, N. Iwasa, M. Senoh, T. Mukai, Jap. J. Appl. Phys. 31 (1992) 1258.

    CAS  Article  Google Scholar 

  27. 27.

    M.S. Brandt, N.M. Johnson, R. L. Molnar, R. Singh, T.D. Moustakas, Appl. Phys. Lett. 64 (1994) 2264.

    CAS  Article  Google Scholar 

  28. 28.

    I.A. Van Vechten, J.D. Zook, R.D. Hornig, B. Goldenberg, Jap. J. Appl. Phys. 31 (1992) 3662.

    Article  Google Scholar 

Download references


This work was supported by the Deutsche Forschungsgemeinschaft (Do 438/4-1, Stu 139/3) and by the Beschleunigerlaboratorium der LMU und TU München.

Author information



Corresponding author

Correspondence to G. Dollinger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dollinger, G., Karsch, S., Ambacher, O. et al. Elemental Analysis on Group-III Nitrides Using Heavy Ion ERD. MRS Online Proceedings Library 482, 766–777 (1997). https://doi.org/10.1557/PROC-482-745

Download citation