The Effect of Si and Mg Doping in the Microstructure of Epitaxially Grown GaN

Abstract

The effect of p- and n-type doping (using Mg and Si, respectively) in the microstructure of GaN, grown epitaxially on (0001)Al2O3 and (111)Si, is studied with X-ray absorption measurements at the N-K-edge. A distortion in the local microstructure around the N atom is detected in the undoped and the Mg doped samples. The N atom is 4-fold coordinated with n Ga atoms in the expected distance and 4-n atoms at a distance longer by 0.28Å, where 2.9 < n < 3.3. Such a distortion, which is attributed to the inward relaxation and the strong interaction between the Ga atoms surrounding the nitrogen vacancies (VN), does not exist in the Si doped sample (carrier concentration=1.57×1018cm−3) where the formation of VN is suppressed due to the n-type doping. However, in GaN:Si the N atom is undercoordinated with 3.3 nearest neighbors instead of 4. This undercoordination indicates the presence of VGa and/or NGa antisite defects. Finally, from the nearest neigbohr distances the lattice parameters were calculated and it is found that although the a and c vary by about 1.5%, the ratio of the lattice constants, c/a, remains constant and equal to 1.63.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. A. Cooper in ?Gallium Nitride I? p. 473, Vol. Ed. J. I. Pankove and T. D. Moustakas, Academic Press 1998.

  2. [2]

    I. Akasaki, H. Amano in ?Gallium Nitride r? p. 459, Vol. Ed. J. I. Pankove and T. D. Moustakas, Academic Press 1998.

  3. [3]

    Properties of Group III Nitrides, edited by J. H. Edgar, (INSPEC, Exeter, 1994).

    Google Scholar 

  4. [4]

    S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett, 64, 1687(1994).

    CAS  Article  Google Scholar 

  5. [5]

    P. Perlin, T. Suski, H. Teisseyre, M. Lezszynski, I. Grzegory, J. Jun, S. Porowski, P. Boguslawski, J. Bernholc, J. C. Chervin, A. Polian, T. D. Moustakas, Phys. Rev. Lett., 75, 296 (1995).

    CAS  Article  Google Scholar 

  6. [6]

    T. Mattila, A. P. Seitsonen, R. M. Neiminen, Phys. Rev. B, 54, 1474 (1996).

    CAS  Article  Google Scholar 

  7. [7]

    H. M. Chen, Y. F. Chen, M. C. Lee, M. S. Feng, Phys. Rev. B, 56, 6942 (1997).

    CAS  Article  Google Scholar 

  8. [8]

    T. Suski, P. Perlin, H. Teisseyre, M. Lezszynski, I. Grzegory, J. Jun, M. Bockowski, S. Porowski, T. D. Moustakas, Appl. Phys. Lett., 67, 2188 (1995).

    CAS  Article  Google Scholar 

  9. [9]

    J. Neugebauer, C. Van de Walle, Appl. Phys. Lett., 69, 503 (1996).

    Article  Google Scholar 

  10. [10]

    K. Saarinen, T Laine, S. Kuisma, J. Nissil, P. Hautojärvi, L. Dobrzynski, J. M. Baranowski, K. Pakula, R. Stepniewski, M. Wojdak, A. Wysmolek, T. Suski, M. Lezszynski, I. Grzegory, S. Porowski, Phys. Rev. Lett., 79, 3030 (1997).

    CAS  Article  Google Scholar 

  11. [11]

    H. Liu, J. K. Kim, M. H. Ludwig, R. M. Park, 71, 347 (1997).

  12. [12]

    J. Neugebauer, C. Van de Walle, Phys. Rev. B, 50, 8067(1994).

    CAS  Article  Google Scholar 

  13. [13]

    P. Boguslawski, E. L. Briggs, J. Bernholc, Phys. Rev. B, 51, 17255(1995).

    CAS  Article  Google Scholar 

  14. [14]

    B. K. Teo, EXAFS: Basic Principles and Data analysis, (Springer, Berlin, 1986).

    Google Scholar 

  15. [15]

    T. D. Moustakas, R. J. Molnar, Mat. Res. Soc. Proc., 281, 753 (1993).

    CAS  Article  Google Scholar 

  16. [16]

    H. Petersen, Nucl. Instr. Methods, A246, 260(1986).

    CAS  Article  Google Scholar 

  17. [17]

    L. Trüger, D. Arvanitis, H. Rabus, L. Wenzel, K. Baberschke, Phys. Rev.B, 41, 7297 (1990).

    Article  Google Scholar 

  18. [18]

    M. Katsikini, E. C. Paloura, M. Fieber-Erdmann, J. Kalomiros, T. D. Moustakas, H. Amano, I. Akasaki, Phys. Rev. B., 56, 13380(1997)

    CAS  Article  Google Scholar 

  19. [19]

    J. Mustre de Leon, J. J. Rehr, R. C. Albers, S. I. Zabinsky, Phys. Rev. B 44, 3937 (1992).

    Google Scholar 

  20. [20]

    E. Sevillano, H. Meuth, J. J. Rehr, Phys. Rev. B20, 908(1979).

    Google Scholar 

  21. [21]

    Landoldt-Bornstein, Zahlenwerte und Funktionen aus Naturwissenschaft und Technik, (Springer, Berlin, 1982).

    Google Scholar 

  22. [22]

    J. Südhr, NEXAFS spectroscopy, (Springer, Berlin, 1992).

    Google Scholar 

  23. [23]

    M. Katsikini, E. C. Paloura, M. Fieber-Erdmann, T. D. Moustakas, H. Amano, I. Akasaki, Proc. Mat. Res. Soc. Proc., 449, 459 (1997).

    Article  Google Scholar 

  24. [24]

    M. Leszczynski, H. Teisseyre, T. Suski, I. Grzegory, M. Bockowski, J. Jun, K. Pakula, J. M. Baranowski, C. T. Foxon, T. S. Cheng, Appl. Phys. Lett. 69, 73(1996)

    CAS  Article  Google Scholar 

  25. [25]

    O. Lagerstedt and B. Monemar, Phys.Rev. B 19, 3064 (1979).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The X-ray absorption measurements were realized with financial support from the EC-HCM (CHGE-CT93-0027) program. One of the authors, T.D.M., acknowledges support from the DARPA agreement MDA 972-95-3-0008.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Katsiktnl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katsiktnl, M., Paloura, E.C., Fieber-Erdmann, M. et al. The Effect of Si and Mg Doping in the Microstructure of Epitaxially Grown GaN. MRS Online Proceedings Library 482, 440–445 (1997). https://doi.org/10.1557/PROC-482-381

Download citation