Design and Characterization of a UHV Arcjet Nitrogen Source

Abstract

A UHV-compatible nitrogen arcjet suitable for the growth of III-nitrides by molecular beam epitaxy is described and characterized. The arcjet operates at powers between 10W and 300W (the highest power used for these studies); typical nitrogen flows range between 5sccm and 100sccm. Optical emission spectra show the presence of activated atomic (N*) and molecular (N2*) nitrogen. A collisional radiative equilibrium model has been employed to provide insight into the excitation state of the active nitrogen. These results indicate that the arcjet is capable of supplying atomic nitrogen fluxes consistent with growth rates on the order of several monolayers per second. Langmuir probe measurements conducted near the position of the sample holder in the MBE chamber show the charged particle flux density is very low. The arcjet operates over a large powerpressure parameter space, and properties of the arc can be systematically “tuned” to provide a source suitable for selected-energy-epitaxy.

This is a preview of subscription content, access via your institution.

References

  1. 1

    N. Newman, J. Ross, and M. Rubin, Appl. Phys. Lett. 62, 1242 (1993).

    CAS  Article  Google Scholar 

  2. 2

    W. E. Hoke, P. J. Lemonias, and D. G. Weir, J. Cryst. Growth. 111, 1024 (1991).

    CAS  Article  Google Scholar 

  3. 3

    R. J. Molnar and T. D. Moustakas, J. Appl. Phys. 76, 4587 (1994).

    CAS  Article  Google Scholar 

  4. 4

    R. W. McCullough, J. Geddes, J. A. Croucher, J. M. Woolsey, D. P. Higgins, M. Schlapp, and H. B. Gilbody, J. Vac. Sci. Technol. A 14, 152 (1996).

    CAS  Article  Google Scholar 

  5. 5

    R. Beresford, A. Ohtani, K. S. Stevens, and M. Kinniburgh, J. Vac. Sci. Technol. B 13, 792 (1995).

    CAS  Article  Google Scholar 

  6. 6

    B. A. Ferguson, A. Sellidj, B. B. Doris, and C. B. Mullins, J. Vac. Sci. Technol. A 14, 825 (1996).

    CAS  Article  Google Scholar 

  7. 7

    R. G. Jahn, Physics of Electric Propulsion (McGraw-Hill, New York, 1968).

    Google Scholar 

  8. 8

    R. P. Vaudo, Z. Yu, J. J.W. Cook, and J. F. Schetzina, Optics Lett. 18, 1843 (1993).

    CAS  Article  Google Scholar 

  9. 9

    J. P. Apruzese, J. Davis, D. Duston, and R. W. Clark, Phys. Rev. A 29, 246 (1983).

    Article  Google Scholar 

  10. 10

    R. W. Clark, J. Davis, J. P. Apruzese, and J. L. Giuliani, J. Quant. Spect. Rad. Trans. 53, 307 (1995).

    CAS  Article  Google Scholar 

  11. 11

    J. P. Apruzese, J. Quant. Spect. Rad. Trans. 25, 419 (1981).

    CAS  Article  Google Scholar 

  12. 12

    K. D. Sevier, Low Energy Electron Spectrometry (John Wiley & Sons, New York, 1972).

    Google Scholar 

Download references

Acknowledgments

The research described in this paper was performed by the Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of Technology, and was jointly sponsored by the Office of Naval Research and the Ballistic Missile Defense Organization / Innovative Science and Technology Office through an agreement with the National Aeronautics and Space Administration (NASA).We would also like to acknowledge the support by E.P. Fortier for the fabrication of many of the UHV arcjet components.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R.N. Bicknell-Tassius.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bicknell-Tassius, R., Deelman, P., Grunthaner, P. et al. Design and Characterization of a UHV Arcjet Nitrogen Source. MRS Online Proceedings Library 482, 393–398 (1997). https://doi.org/10.1557/PROC-482-325

Download citation