Segregation of Copper to (100) and (111) Silicon Surfaces in Equilibrium with Internal Cu3Si Precipitates


The energetics of copper segregation to silicon surfaces were examined by measuring the Cu coverage after equilibration between Cu on the surface and internal Cu3Si, for which the Cu chemical potential is known. For oxide-free surfaces the Cu coverage was close to one monolayer on (111) surfaces but was much smaller on (100) surfaces. The Cu coverage was greatly reduced by oxide passivation of the surface. LEED showed the 7×7 structure of the clean (111) silicon surface converted to a quasiperiodic 5×5 structure after equilibrating with Cu3Si. The 2×1 LEED patterns for (100) surfaces indicated no change in surface structure due to the Cu3Si. These results show that the free energy of copper in Cu3Si is higher than that of copper on (111) surfaces but lower than that of copper on (100) surfaces.

This is a preview of subscription content, access via your institution.


  1. 1.

    Mater. Res. Soc. Bull., Vol.19, No. 8, Aug. 1994.

  2. 2.

    E. R. Weber, Appl. Phys., A30, 1 (1983).

    CAS  Article  Google Scholar 

  3. 3.

    D. Gilles and E. R. Weber, Phys. Rev. Lett. 64, 196 (1990).

    CAS  Article  Google Scholar 

  4. 4.

    S. M. Myers and D. M. Follstaedt, J. Appl. Phys. 79, 1337 (1996).

    CAS  Article  Google Scholar 

  5. 5.

    S. M. Myers G. A. Petersen and C. H. Seager, J. Appl. Phys. 80, 3717 (1996).

    CAS  Article  Google Scholar 

  6. 6.

    D. M. Follstaedt, Appl. Phys Lett. 62, 1116 (1993).

    CAS  Article  Google Scholar 

  7. 7.

    A. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 119, 666 (1986).

    Article  Google Scholar 

  8. 8.

    Le Thanh Vinh, M. Eddrief, C. A. Sebenne, P. Dumas, A. Taleb-Ibrahimi, R. Gunther, Y. J. Chabal and J. Derrien, Appl. Phys Lett. 64, 3308 (1994).

    Article  Google Scholar 

  9. 9.

    D. M. Follstaedt and S. M. Myers, Mat. Res. Soc. Symp. Proc. 316, 27 (1994).

    CAS  Article  Google Scholar 

  10. 10.

    M. Mundschau, E. Bauer, W. Telieps and W. Swiech, J. Appl. Phys. 65, 4747 (1989).

    CAS  Article  Google Scholar 

  11. 11.

    E. Daugy, P. Mathiez, F. Salvan and J. M. Layet, Surface Sci. 154, 267 (1985).

    CAS  Article  Google Scholar 

  12. 12.

    J. Zegenhagen, E. Fontes, F. Grey and J. R. Patel, Phys. Rev. B46, 1860 (1992).

    Article  Google Scholar 

  13. 13.

    H. Kemmann, F. Müller and H. Neddermeyer, Surface Sci. 192, 11 (1987).

    CAS  Article  Google Scholar 

  14. 14.

    R. B. Doak and D. B. Nguyen, Phys. Rev. 40, 1495 (1989).

    CAS  Article  Google Scholar 

  15. 15.

    J. E. Demuth, U. K. Koehler, R. J. Hamers and P. Kaplan, Phys. Rev. Lett. 62, 641 (1989).

    CAS  Article  Google Scholar 

  16. 16.

    K. Mortensen, Phys. Rev. Lett. 66, 461 (1991).

    CAS  Article  Google Scholar 

  17. 17.

    T. Ikeda, Y. Kawashima, H. Itoh, and T. Ichinokawa, Surface Sci. 336, 76 (1995).

    CAS  Article  Google Scholar 

  18. 18.

    P. Mathiez, E. Daugy, F. Salvan, J. J. Metois and M. Hanbücken, Surface Sci. 168, 158 (1986).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to W. R. Wampler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wampler, W.R. Segregation of Copper to (100) and (111) Silicon Surfaces in Equilibrium with Internal Cu3Si Precipitates. MRS Online Proceedings Library 448, 371–376 (1996).

Download citation