Radiative Recombination Rates in GaN, InN, AIN and their Solid Solutions

Abstract

The radiative recombination rates have been calculated for the first time in the wide band gap wurtzite semiconductors GaN, InN and A1N and their solid solutions GaxAl1–xN and lnx Al1–xN on the base of existing data on the energy band structure and optical absorption in these materials. We calculated the interband matrix elements for the direct optical transitions between the conductivity band and the valence one using the experimental photon energy dependence of the absorption coefficient near the band edge. In our calculations we assumed that the material parameters of the solid solutions (the interband matrix element, carrier effective masses and so on) could be obtained by a linear interpolation between their values in the alloy components. The temperature dependence of the energy gap was taken in the form proposed by Varshni. The calculations of the radiative recombination rates were performed in the wide range of temperature and alloy compositions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S. Strite, M.E. Lin and H. Morkoç: Thin Solid Films 231 (1993) 197.

    CAS  Google Scholar 

  2. [2]

    S. Nakamura et al.: Jpn. J. Appl. Phys. 34 (1995) 1832; Appl. Phys. Lett. 67 (1995) 1866.

    Google Scholar 

  3. [3]

    S. Yoshida, S. Misawa and S. Gonda: J. Appl. Phys. 53 (1982) 6844.

    CAS  Google Scholar 

  4. [4]

    R. Dingle and D.D. Seu: Phys. Rev. B4 (1971) 1211.

    Google Scholar 

  5. [5]

    R.B. Perry and R.F. Rutz: Appl. Phys. Lett. 33 (1978) 319.

    CAS  Google Scholar 

  6. [6]

    S. Bloom and G. Hakbeke: Physica status solidi (b) 66 (1974) 161.

    CAS  Google Scholar 

  7. [7]

    C.P. Foly and T.M. Tasley: J. Appl. Phys. 59 (1986) 3241.

    Google Scholar 

  8. [8]

    D.J ones and A.H. Lettington: Solid State Commun. 11 (1972) 701.

    Google Scholar 

  9. [9]

    A. Rubio, J.L. Corkill et al.: Phys. Rev. 48 (1993) 11810.

    CAS  Google Scholar 

  10. [10]

    C.P. Foly and T.M. Tasley: Phys. Rev. 33 (1986) 1430.

    Google Scholar 

  11. [11]

    M.Z. Huang and W.Y. Ching: J. Phys. Chem. Solids 46 (1985) 977.

    CAS  Google Scholar 

  12. [12]

    Qixin Guo and A. Yoshida: Jpn. J. Appl. Phys. 33 (1994) 2453.

    CAS  Google Scholar 

  13. [13]

    H. Tessiere, P. Perlin et al.: J. Appl. Phys. 76 (1994) 2429.

    Google Scholar 

  14. [14]

    J.L. Biraian: Phys. Rev. 114 (1959) 1490.

    Google Scholar 

  15. [15]

    J. Pastrnak and L. Roskova: Physica status solidi 26 (1968) 591.

    CAS  Google Scholar 

  16. [16]

    S. Bloom: J. Phys. Chem. Solids 32 (1971) 2027.

    CAS  Google Scholar 

  17. [17]

    Y.P. Varshni: Physica 34 (1967) 149.

    CAS  Google Scholar 

  18. [18]

    W. van Roosbroeck and W. Shockley: Phys. Rev. 94 (1954) 1558.

    Google Scholar 

  19. [19]

    P.T. Landsberg: Recombination in Semiconductors, Cambridge University Press, 1991.

    Google Scholar 

  20. [20]

    H. Yamashita, K. Pukui, S. Misawa and S. Yoshida: J. Appl. Phys. 50 (1979) 896.

    CAS  Google Scholar 

  21. [21]

    Y. Koide, H. Itoh et al.: J. Appl. Phys. 21 (1987) 4540.

    Google Scholar 

  22. [22]

    J.C. Phillips: Bonds and Bands in Semiconductors, Academic, New York, 1973.

    Google Scholar 

Download references

Acknowledgments

The work was supported in part by Russian Foundation for Fundamental Research and by the International Science Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A.V. Dmitriev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dmitriev, A., Oruzheinikov, A. Radiative Recombination Rates in GaN, InN, AIN and their Solid Solutions. MRS Online Proceedings Library 423, 69–73 (1996). https://doi.org/10.1557/PROC-423-69

Download citation