Characterisation of Diamond-like Carbon by Raman Spectroscopy and Optical Constants

Abstract

Crystalline diamond coatings and, increasingly, diamond like amorphous carbon (DLC) films are used for tribological and protective layers for their hardness and chemical inertness. They are also under investigation for their electron emitting properties, with possible applications in field emission displays. DLC films were deposited by laser ablation using a KrF excimer laser and fluences between 0.5 and 2 J/cm2. FTIR measurements did not show the presence of hydrogen in the films. Raman spectra allowed for the determination of the nature of the graphitic and diamond bonds (sp2 and sp3) as well as information about the disorder and short range order in the films. For a better determination of the sp3-content, which is often hidden in the Raman spectra, a correlation with optical properties in the near IR to near UV region was established. These values depended strongly on the substrate temperature and the laser fluence. DLC formation could be demonstrated even at substrate temperatures close to room temperature. Vickers hardness values and first measurements on the electron emissivity of the films can be correlated to the diamond character and the preparation method of the films.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    O.S. Panar, D. Sarangi, S. Kumar, P. Dixit, R. Bhattacharyya, J. Vac. Sci. Technol. A 13, 2519 (1995)

    Article  Google Scholar 

  2. 2.

    D.L. Pappas, J. Hopwood, J. Vac. Sei. Technol. 12, 1576 (1994)

    CAS  Article  Google Scholar 

  3. 3.

    A.A. Goruppa, N. St. J. Braithwaite, Diamond and Related Materials 3, 1223 (1994)

    CAS  Article  Google Scholar 

  4. 4.

    L. Ganapathi, S. Giles, R. Rao, Appl. Phys. Lett. 63, 993 (1993)

    CAS  Article  Google Scholar 

  5. 5.

    R.T. Demers, D.G. Harris, SPIE Vol. 1146, 48 (1989)

    CAS  Google Scholar 

  6. 6.

    F. Davanloo, E.M. Juengermann, D.R. Jander, T.E. Lee, C.B. Collins, J. Mater. Res. 5, 2398 (1990)

    CAS  Article  Google Scholar 

  7. 7.

    D.L. Pappas, K.L. Saenger, J. Bruley, W. Krakow, J.J. Cuomo, J. Apll. Phys. 71, 5675 (1992)

    CAS  Article  Google Scholar 

  8. 8.

    N. Kumar, H. K. Schmidt, M. H. Clark, A. Ross, B. Lin, L. Fredin, B. Baker, D. Patterson, W. Brookover, C. Xie, C. Hilnert, R.L. Fink, C.N. Potter, A. Krishnan, D. Eichman, SID94 Digest, p.94 (1994)

    Google Scholar 

  9. 9.

    K. Okano, K. Hoshina, M. lida, S. Koizumi, T. Inuzuka, Appl. Phys. Lett. 64, 2742 (1994)

    CAS  Article  Google Scholar 

  10. 10.

    K. Okano, K.K. Gleason, Electr. Lett. 31, 74 (1995)

    CAS  Article  Google Scholar 

  11. 11.

    Z. Feng, I.G. Brown, J.W. Ager III, J. Mater. Res. 10, 1585 (1995)

    CAS  Article  Google Scholar 

  12. 12.

    F.J. Himpsel, J.A. Knapp, J.V. VanVechten, D.E. Eastman, Phys. Rev. B 20, 624 (1979)

    CAS  Article  Google Scholar 

  13. 13.

    Z. Zhang, M. Wensell, J. Bernholc, Phys. Rev. B 51, 5291 (1995)

    CAS  Article  Google Scholar 

  14. 14.

    T. Yamada, T.J. Chuang, H. Seki, Y. Mitsuda, Molecular Physics 76, 887 (1991)

    Article  Google Scholar 

  15. 15.

    K.V. Ravi, Mat. Sei. Eng. B 19, 203 (1993)

    Article  Google Scholar 

  16. 16.

    E. I. Givargizov, J. Vac. Sei. Technol B 13, 414 (1995)

    CAS  Article  Google Scholar 

  17. 17.

    P. Laou, I. Shi, C. Py, C. Mößner, P. Grant, to be published

  18. 18.

    P.D. Grant, M.W. Denhoff, H. Tran, Physica C 185–189, 2099 (1991)

    Article  Google Scholar 

  19. 19.

    J.-M. Jin, M.W.C. Dharma-wardana, D.J. Lockwood, G.C. Aers, Z.H. Lu, L.J. Lewis, Phys. Rev. Lett. 75, 878 (1995)

    CAS  Article  Google Scholar 

  20. 20.

    R. Berriche, Scripta Metall. Mat. 32, 617 (1995)

    CAS  Article  Google Scholar 

  21. 21.

    D.R McKenzie, D. Muller, B.A. Pailthorpe, Phys. Rev. Lett 67, 773 (1991)

    CAS  Article  Google Scholar 

  22. 22.

    D.J. Krajnovich, J. Cham Phys. 102, 726 (1995)

    CAS  Article  Google Scholar 

  23. 23.

    C. Germain, C. Girault, R. Gisbert, J. Aubreton, A. Catherinot, Diamond and related Materials 3, 598 (1994)

    CAS  Article  Google Scholar 

  24. 24.

    K. Mann, F. Müller, SPIE Vol. 1835, 13 (1992)

    Google Scholar 

  25. 25.

    D.S. Knight, W.B. White, J. Mater. Res. 4, 385 (1989)

    CAS  Article  Google Scholar 

  26. 26.

    L.C. Nistor, J. VanLanduyt, V.G. Ralchenko, T.V. Konoenko, E.D. Obrazstova, V.E. Strelnitsky, Apll. Phys. Lett. A 58, 137 (1994)

    Google Scholar 

  27. 27.

    M.L. Terranova, V. Sessa, V. Rigato, F. Caccavale, M. Braglia, G. Cocito, Thin Solid Films 232, 21

  28. 28.

    C. Mößner, I. Sproule, unpublished results

  29. 28.

    H.R. Philipp, H. Ehrenreich, Phys. Rev. 129, 1550 (1963)

    CAS  Article  Google Scholar 

  30. 29.

    N. Savides, J. Appl. Phys. 58, 518 (1985)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (C.M.) would like to thank Irwin Sproule, Jeff Frazer, John Phillips, Jennifer Bardwell, Richard Barber, Bryce Baites and Alexander Blais for additional measurements and helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Mößner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mößner, C., Grant, P., Tran, H. et al. Characterisation of Diamond-like Carbon by Raman Spectroscopy and Optical Constants. MRS Online Proceedings Library 423, 699–704 (1996). https://doi.org/10.1557/PROC-423-699

Download citation