Theoretical Study of Hydrogen in Cubic GaN


Preliminary results of theoretical studies of hydrogen and hydrogen-related defects in cubic GaN are reported. Our calculations contrast with those of other authors in that the host crystal is represented by molecular clusters rather than periodic supercells, and that they are obtained using an all-electron methodology rather than the single effective-particle approach of density-functional theory. Our results confirm some predictions of other authors but conflict with others.

This is a preview of subscription content, access via your institution.


  1. 1.

    For a review of the history and key properties of GaN, see J.I. Pankove, MRS Proc. 162, 515 (1990).

  2. 2.

    GaN and Related Materials’, ed. S.J. Pearton (Gordon &: Breach, New York, in print).

  3. 3.

    J.M. Zavada, R.G. Wilson, C.R. Abernathy, and S.J. Pearton, Appl. Phys. Lett. 64, 2724 (1994).

    CAS  Google Scholar 

  4. 4.

    S.J. Pearton, C.R. Abernathy, and F. Ren, Electrochem. Lett. 30, 527 (1994).

    CAS  Google Scholar 

  5. 5.

    M.S. Brandt, N.M. Johnson, R.J. Molnar, R. Singh, and T.D. Moustakas, Appl. Phys. Lett. 64, 2264 (1994).

    CAS  Google Scholar 

  6. 6.

    B. Molnar, C.R. Eddy, Jr., and K. Doverspike, ECS Proc. 95–21, 236 (1995).

    Google Scholar 

  7. 7.

    S.K. Estreicher, Mat. Sci. Engr. Reports 14, 319 (1995).

    Google Scholar 

  8. 8.

    S.J. Pearton, J.W. Corbett, and M.J. Stavola, ‘Hydrogen in Crystalline Semiconductors’ (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  9. 9.

    Hydrogen in Compound Semiconductors’, ed. S.J. Pearton, Mat. Sci. Forum 148–149 (Trans Tech Aedermannsdorf, Switzerland, 1994).

  10. 10.

    See the chapter by S.K. Estreicher and D.E. Boucher in Ref. 2.

  11. 11.

    S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31, 1258 (1992).

    CAS  Google Scholar 

  12. 12.

    J.A. Van Vechten, J.D. Zook, R.D. Horning, and B. Goldenberg, Jpn. J. Appl. Phys. 31, 3662 (1992).

    Google Scholar 

  13. 13.

    Y. Ohba and A. Hatano, Jpn. J. Appl. Phys. 33, L1367 (1994).

    CAS  Google Scholar 

  14. 14.

    M.S. Brandt, J.W. Ager III, W. Götz, N.M. Johnson, J.S. Harris, Jr., R.J. Molnar, and T.D. Moustakas, Phys. Rev. B 49, 14758 (1994).

    CAS  Google Scholar 

  15. 15.

    S.J. Pearton, private communication.

  16. 16.

    S.J. Pearton, R.J. Shul, R.G. Wilson, F. Ren, J.M. Zavada, C.R. Abernathy, C.B. Vartuli, J.W. Lee, J.R. Mileham, and J.D. Mackenzie, ECS Proc. 95–21, 178 (1995).

    Google Scholar 

  17. 17.

    J. Neugebauer and C.G. Van de Walle, Phys. Rev. Lett. 75, 4452 (1995).

    CAS  Google Scholar 

  18. 18.

    A. Bosin, V. Fiorentini, and D. Vanderbilt, MRS Proc. 395 (1996) in print.

  19. 19.

    T. Ogino and M. Aoki, Jpn. J. Appl. Phys. 19, 2395 (1980).

    CAS  Google Scholar 

  20. 20.

    See the discussion in Ref. 7 and L. Throckmorton and D.S. Marynick, J. Comp. Chem. 6, 652 (1985).

  21. 21.

    D.R. Armstrong, P.G. Perkins, and J.J.P. Stewart, J. Chem. Soc. Dalton Trans. (1973), p. 838.

    Google Scholar 

Download references


The work of SKE is supported by the grant D-1126 from the R.A. Welch Foundation and the contract XAX-5-15230-01 from the National Renewable Energy Laboratory. Most of the computer time required for the present research was provided by the Swiss Center for Scientific Computing.

Author information



Corresponding author

Correspondence to Stefan K. Estreicher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Estreicher, S.K., Maric, D.M. Theoretical Study of Hydrogen in Cubic GaN. MRS Online Proceedings Library 423, 613–618 (1996).

Download citation