Ion Beam Synthesis by Tungsten Implantation into 6H-Silicon Carbide at Elevated Temperatures


We studied high dose implantation of tungsten into 6H-silicon carbide in order to synthesize an electrically conductive layer. Implantation was performed at 200 keV with a dose of 1×1017 W+cm−2 at temperatures of 90°C and 500°C. The samples were subsequently annealed either at 950°C or 1100°C. The influence of implantation and annealing temperatures on the reaction of W with SiC was investigated. Rutherford backscattering spectrometry (RBS), x-ray diffraction (XRD) and Auger electron spectroscopy (AES) contributed to study the structure and composition of the implanted layer as well as the chemical state of the elements. The implantation temperature influences the depth distribution of C, Si and W as well as the damage production in SiC. The W depth profile exhibits a bimodal distribution for high temperature implantation and a customary gaussian distribution for room temperature implantation. Formation of tungsten carbide and silicide was observed in each sample already in the as-implanted state. Implantation at 90°C and annealing at 950°C lead to crystallization of W2C; tungsten silicide, however, remains amorphous. After implantation at 500°C and subsequent annealing at 1100°C crystalline W5Si3 forms, while tungsten carbide is amorphous.

This is a preview of subscription content, access via your institution.


  1. 1.

    W.E. Nelson, F.A. Halden and A. Rosengreen, J. Appl. Phys. 37, 333 (1966).

    CAS  Google Scholar 

  2. 2.

    G. Pensl and R. Helbig, Festkörperprobleme/Advances in Solid State Physics 30, 133 (1990).

    CAS  Google Scholar 

  3. 3.

    J.B. Petit and M.V. Zeller in Wide Band Gap Semiconductors, edited by T.D. Moustaka, J.I. Pankove, and Y. Hamakawa (Mater. Res. Soc. Proc. 242, Pittsburgh, PA, 1992) pp. 567–572.

    CAS  Google Scholar 

  4. 4.

    R.C. Glass, L.M. Spellman, and R.F. Davis, Appl. Phys. Lett. 59, 2868 (1991).

    CAS  Google Scholar 

  5. 5.

    M.M. Anikin, M.R. Rastegaeva, A.L. Syrkin, and I.V. Chuiko, Springer Proceedings in Physics 56, 183 (1992).

    CAS  Google Scholar 

  6. 6.

    J. Crofton, J.M. Ferrero, P.A. Barnes, J.R. Williams, M.J. Bozack, C.C. Tin, C.D. Ellis, J.A. Spitznagel, and P.G. McMullin, Springer Proceedings in Physics 71, 176 (1992).

    CAS  Google Scholar 

  7. 7.

    V.A. Dmitriev, K. Irvine, M. Spencer, and G. Keiner, Appl. Phys. Lett. 64, 318 (1994).

    CAS  Google Scholar 

  8. 8.

    A.K. Chaddha, J.D. Parsons, and G.B. Kruaval, Appl. Phys. Lett. 66, 760 (1995).

    CAS  Google Scholar 

  9. 9.

    T. Uemoto, Jpn. J. Appl. Phys. 34, L7 (1995).

    CAS  Google Scholar 

  10. 10.

    J. Crofton, P.G. McMullin, J.R. Williams, and M.J. Bozack, J. Appl. Phys. 77, 1317 (1995).

    CAS  Google Scholar 

  11. 11.

    L. Baud, C. Jaussaud, R. Madar, C. Bernard, J.S. Chen, and M.A. Nicolet, Mat. Sci. Eng. B29, 126 (1995).

    CAS  Google Scholar 

  12. 12.

    H. Zhang, PhD thesis, Friedrich Alexander Universität Erlangen, 1990.

  13. 13.

    K.M. Geib, C. Wilson, R.G. Long, and C.W. Wilmsen, J. Appl. Phys. 68, 2796 (1990).

    CAS  Google Scholar 

  14. 14.

    C. Jacob, S. Nishino, M. Mehregany, and P. Pirouz, in Silicon Carbide and Related Materials (Institute of Physics Publishing, Bristol and Philadelphia, 1994) ch.3 p.247.

    Google Scholar 

  15. 15.

    H. Weishart, J. Schöneich, H.-J. Steffen, W. Matz, and W. Skorupa in Beam-Solid Interactions for Materials Synthesis and Characterization, edited by D.E. Luzzi, T.F. Heinz, M. Iwaki, and D.C. Jacobson (Mater. Res. Soc. Proc. 354, Pittsburgh, PA, 1995) pp. 177–182; Nucl. Instr. Meth. B10532, xxx (1996).

    CAS  Google Scholar 

  16. 16.

    C.J. McHargue and J.M. Williams, Nuc. Instr. Meth. B80/81, 889–94 (1993).

    Google Scholar 

  17. 17.

    V. Heera, R. Kögler, W. Skorupa, and J. Stoemenos, Appl. Phys. Lett. 67, 1999 (1995).

    CAS  Google Scholar 

  18. 18.

    R.G. Vardiman, Materials Science and Engineering A177, 209 (1994).

    Google Scholar 

  19. 19.

    S.P. Murarka, in Silicides for VLSI Applications (Academic Press, Orlando, 1983) p. 30.

    Google Scholar 

Download references


The authors want to thank Dr. J. Schöneich for the implantation, Mrs. E. Quaritsch and Dr. H. Reuther for the AES and Drs. M. Voelskow and M. Mäder for the RBS measurements. We are especially indebted to Dr. R. Yankov for fruitful discussions.

Author information



Corresponding author

Correspondence to Hannes Weishart.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Weishart, H., Matz, W. & Skorupa, W. Ion Beam Synthesis by Tungsten Implantation into 6H-Silicon Carbide at Elevated Temperatures. MRS Online Proceedings Library 423, 195–200 (1996).

Download citation