Dry Etch Damage in InN, InGaN and InAlN

Abstract

Damage introduction in III-V nitrides during dry etching can be simulated by exposing the samples to pure Ar plasmas for study of the physical (ion-bombardment) effects. Changes in conductivity of InN, In0.5Ga0.5N and In0.5Al0.5N layers exposed to Ar plasmas under both Electron Cyclotron Resonance and reactive ion etching conditions have been measured as a function of rf power, pressure and exposure time. The combination of high microwave and high rf powers produces large increases (10–104 times) in sheet resistance of the nitrides, but conditions more typical of real etching processes (rf power < 150W) do not change the bulk electrical properties. The nitrides are more resistant to damage introduction than other III-V semiconductors. The removal of damage-related traps occurs with an activation energy of ~2.7eV. High ion currents during ECR etching can produce substantial conductivity changes, whereas the lower currents under RIE conditions do not affect the nitrides. It is difficult to avoid preferential loss of N in the near-surface of these materials, which leads to leakage currents in rectifying metal contacts deposited on these surfaces.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64 1687 (1994)

    CAS  Google Scholar 

  2. 2.

    S. C. Binari, L. B. Rowland, W. Kruppa, G. Keiner, K. Doverspike and D. K. Gaskill, Electron. Lett. 30 1248 (1994)

    CAS  Google Scholar 

  3. 3.

    M. A. Khan, A. Bhattarai, J. N. Kuznia and D. T. Olsen, Appl. Phys. Lett. 63 1214 (1993)

    CAS  Google Scholar 

  4. 4.

    I. Adesida, A. Mahajan, E. Andideh, M. A. Khan, D. T. Olsen and J. N. Kuznia, Appl. Phys. Lett. 63 2777 (1993)

    CAS  Google Scholar 

  5. 5.

    S. J. Pearton, C. R. Abernathy and F. Ren, Appl. Phys. Lett. 64 2294 (1994)

    CAS  Google Scholar 

  6. 6.

    M. E. Lin, Z. Fan, Z. Ma, L. H. Allen and H. Morkoe, Appl. Phys. Lett. 64 887 (1994)

    CAS  Google Scholar 

  7. 7.

    R. J. Shul S. D. Kilcoyne, M. Hagerott-Crawford, J. E. Parmeter, C. B. Vartuli, C. R. Abernathy and S. J. Pearton, Appl. Phys. Lett. 66 1761 (1995)

    Google Scholar 

  8. 8.

    G. F. McLane, L. Casas, S. J. Pearton and C. R. Abernathy, Appl. Phys. Lett. 66 3328 (1995)

    CAS  Google Scholar 

  9. 9.

    C. R. Abernathy, J. Vac. Sci. Technol. A 11 889 (1993)

    Google Scholar 

  10. 10.

    T. L. Tansley and R. J. Egan, Phys. Rev. B 45 10942 (1993)

    Google Scholar 

  11. 11.

    C. R. Abernathy, J. D. Mackenzie, S. R. Bharatan, K. S. Jones and S. J. Pearton, Appl. Phys. Lett. 66 1632 (1995)

    CAS  Google Scholar 

  12. 12.

    S. J. Pearton, F. Ren, C. R. Abernathy, W. S. Hobson, T. R. Fullowan, R. Esaqui and J. R. Lothian, Appl. Phys. Lett. 61 586 (1992)

    CAS  Google Scholar 

  13. 13.

    K. L. Seaward and N. J. Moll, J. Vac. Sci. Technol. B10, 46 (1992)

    Google Scholar 

  14. 14.

    S. J. Pearton, Mat. Sci. Eng. 4 313 (1990).

    CAS  Google Scholar 

Download references

Acknowledgments

The work at UF is partially funded by grants from the Division of Materials Research of the National Science Foundation, a URI administrated by ONR (#N 00014-92-J-1895) and an AASERT grant from ARO (Dr. J. M. Zavada). The work at Sandia is supported by DOE under contract no. DE-AC04-94AL85000. The work at UF is performed in the Microfabritech facility whose staff is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. J. Pearton.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pearton, S.J., Lee, J.W., MacKenzie, J.D. et al. Dry Etch Damage in InN, InGaN and InAlN. MRS Online Proceedings Library 423, 163–168 (1996). https://doi.org/10.1557/PROC-423-163

Download citation