A New Experimental Method for Investigating the Nucleation Kinetics of Solids in Supercooled Liquid Si


In this paper, we first describe and then demonstrate the soundness of a new experimental method that is designed to deliver a wide range of accurately measured nucleation rates of solids in supercooled liquid Si. The method utilizes thin-film processes, as well as laser-quenching and detection techniques, in order to first induce isothermal transformation and then extract the corresponding solid nucleation rates over a frequency range potentially greater than ten orders of magnitude. The technological and scientific gains that can result from acquiring such information are discussed.

This is a preview of subscription content, access via your institution.


  1. 1

    G. Devaud and D. Turnbull, Appl. Phys. Lett. 46, 844 (1985).

    CAS  Article  Google Scholar 

  2. 2

    Yan Shao and Frans Spaepen, see this volume.

  3. 3

    Y. -W. Kim, H. -M. Lin, and T. F. Kelly, Acta Metall. 37, 247 (1989).

    CAS  Article  Google Scholar 

  4. 4

    D. Dutarte, J. Appl. Phys. 59, 1977 (1986).

    Article  Google Scholar 

  5. 5

    S. R. Stiffler, M. O. Thompson, P. S. Peercy, Phys. Rev. Lett. 60, 2519 (1988).

    CAS  Article  Google Scholar 

  6. 6

    T. Eiumchotchawalit and James S. Im, Mat. Res. Soc. Symp. Proc. 321, 725 (1994).

    CAS  Article  Google Scholar 

  7. 7

    James S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett. 63, 1969 (1993).

    CAS  Article  Google Scholar 

  8. 8

    James S. Im and H. J. Kim, Appl. Phys. Lett. 64, 2303 (1994).

    CAS  Article  Google Scholar 

  9. 9

    James S. Im and Robert S. Sposili, Materials Research Society Bulletin, vol. xxi, no. 3, 39 (1996).

    Article  Google Scholar 

  10. 10

    H. Jin Song and James S. Im, accepted for publication in Appl. Phys. Lett.

  11. 11

    J. H. Hollomon and D. Turnbull, “Nucleation”, in Progress in Metal Physics, 4: 333 (1953).

    CAS  Article  Google Scholar 

  12. 12

    D. M. Herlach, Mat. Sci. Eng., R12, 177 (1994).

    CAS  Article  Google Scholar 

  13. 13

    W. A. Tiller, The Science of Crystallization: Microscopic Interfacial Phenomena (Cambridge University Press, Cambridge, UK, 1991).

    Google Scholar 

  14. 14

    D. Turnbull, J. Chem. Phys. 18, 768 (1950).

    CAS  Article  Google Scholar 

  15. 15

    G. M. Pound and V. K. La Mer, J. Am. Chem. Soc. 74, 2323 (1952).

    CAS  Article  Google Scholar 

  16. 16

    The program was obtained from M. O. Thompson, Department of Materials Science and Engineering, Cornell University, Ithaca, NY.

  17. 17

    S. A. Cohen, T. O. Sedgwick, and J. L. Speidel, Mat. Res. Soc. Symp. Proc. 23, 321 (1984).

    CAS  Article  Google Scholar 

  18. 18

    B. Chalmers, Principles of Solidification (John Wiley & Sons, New York, 1964).

    Google Scholar 

  19. 19

    M. O. Thompson, J. W. Mayer, A. G. Cullis, H. C. Webber, N. G. Chew, J. M. Poate, and D. C. Jacobson, Phys. Rev. Lett. 50, 896 (1983).

    CAS  Article  Google Scholar 

  20. 20

    Vikas V. Gupta, H. Jin Song, and James S. Im, accepted for publication in Mat. Res. Soc. Symp. Proc. 397, (1996).

  21. 21

    James S. Im, H. Tomita, and C. V. Thompson, Appl. Phys. Lett. 51, 685 (1987).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to H. Jin Song.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jin Song, H., Im, J.S. A New Experimental Method for Investigating the Nucleation Kinetics of Solids in Supercooled Liquid Si. MRS Online Proceedings Library 398, 93–98 (1995). https://doi.org/10.1557/PROC-398-93

Download citation