High Conductivity FIB Deposited Metal

Abstract

The ion beam induced metal deposition processes now employed by commercial focused ion beam (FIB) tools all demonstrate less than optimal characteristics for use in circuit repair, a major application of these tools. In particular, the processes have low efficiencies, the metals produced have poor conductivity, and some form of clean up is generally required to remove excess material surrounding the repair site. The gold deposition process developed for x-ray mask repair, in contrast, exhibits efficiencies 10-50 times higher with significantly less material deposited in unwanted areas. Unfortunately, the conductivity of the gold is even poorer than that of materials now used for FIB circuit repair.

In this paper, an annealing step which improves the conductivity of FIB deposited Au is described. Results are presented demonstrating resistivities of 5-15 μΩ-cm while maintaining the high efficiency of the gold deposition process. The suitability of the process for use in FIB circuit repair is discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1

    P.G. Blauner, Proc. 1991 Intern. MicroProcess Conference, Jap. J. of Appl. Phys. Series 5, p.309 (1991).

  2. 2

    A.D. Dubner, A. Wagner, J. Melngailis, and C.V. Thompson, J. Appl. Phys. 70, p.665 (1991).

    CAS  Article  Google Scholar 

  3. 3

    T. Kaito, T. Adachi, US Patent 4,876,112 (1989).

    Google Scholar 

  4. 4

    D.K. Stewart, L.A. Stern, and J.C. Morgan, Proc. SPIE 1089 p. 18 (1989).

    CAS  Article  Google Scholar 

  5. 5

    J. Puretz and L.W. Swanson, J. Vac. Sci. Technol. B10, p. 2695 (1992).

    Article  Google Scholar 

  6. 6

    P.G. Blauner, Y. Butt, J.S. Ro, C.V. Thompson, and J. Melngailis, J. Vac. Sci. Technol. B7, p. 1816 (1989).

    Article  Google Scholar 

  7. 7

    A.D. Della Ratta, J. Melngailis, and C.V. Thompson, J. Vac. Sci. Technol. B11, p. 2195 (1993).

    Article  Google Scholar 

  8. 8

    P.G. Blauner, A.D. Dubner, and A. Wagner, IBM Tech. Discl. Bul. 36, p.375 (1993).

    Google Scholar 

  9. 9

    P.G. Blauner and J. Mauer, IBM J. of Res. and Devel. 37, p.421 (1993).

    CAS  Article  Google Scholar 

  10. 10

    A. Wagner, J.P. Levin, J.L. Mauer, P.G. Blauner, and P. Longo, J. Vac. Sci. Technol. B8, p. 1557 (1990).

    Article  Google Scholar 

  11. 11

    D.K. Stewart, J.A. Doherty, A.F. Doyle, and J.C. Morgan, Proc. Photomask Japan, Kawasaki City, Kanagawa, Japan (Apr. 1995).

  12. 12

    S.C. Nash, T.B. Faure, J.P. Levin, D.M. Puisto, J.M. Rocque, K.R. Kimmel, M.A. McCord, and R.G. Viswanathan, Jpn. J. Appl. Phys. 33, p. 6878 (1994).

    CAS  Article  Google Scholar 

  13. 13

    A. Wagner, J.P. Levin, and S.J. Kirch, U.S. Patent 5,149,974 (1992).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. G. Blauner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blauner, P.G., Wagner, A. High Conductivity FIB Deposited Metal. MRS Online Proceedings Library 396, 795 (1995). https://doi.org/10.1557/PROC-396-695

Download citation