Focused Ion Beam Metrology


Focused Ion Beams offer a new method of measuring the size of polymer resist features on integrated circuits. The short penetration range of an ion relative to an electron is shown to offer fundamental advantages for critical dimension (CD) metrology. By confining the polymer damage to the very near surface, ion beams can induce less dimensional change than scanning electron microscopes during the measurement process. This can result in improved CD measurement precision. The erosion rate of polymers to various ion species is also presented, and we show that erosion is non-linear with ion dose. The use of FIB for forming resist cross sections is also demonstrated. An H20 gas assisted etching process for polymers has been developed, and is shown to significantly improve the quality of resist cross sections.

This is a preview of subscription content, access via your institution.


  1. 1

    R. D. Larrabee and M. T. Postek, Solid State Elect. 36, 673 (1993).

    Article  Google Scholar 

  2. 2

    R. A. Allen, P. Troccolo, J. C. Owen III, J. E. Potzick, and L. W. Linholm, SPIE 1926, 34, (1993).

    Google Scholar 

  3. 3

    M. Bennett-Lilley, M. Hiatt, L. Lauchlan, L. Mantalas, H. Rottman, M. Seliger, B. Singh, and D. Yansen, SPIE 1464, 131 (1991).

    Google Scholar 

  4. 4

    S. K. Jones, R. L. Van Asselt, J. C. Russ, B. W. Dudley, and G. J. Johnson, SPIE 1261, 53 (1990).

    Google Scholar 

  5. 5

    T. Ahmed, S. R. Chen, H. M. Naguib, T. A. Brunner, and S. M. Stuber, SPIE 775, 80 (1987).

    Google Scholar 

  6. 6

    K. Harris, I. Nadler-Niv, D Levy, SPIE 1261, 18 (1990)

    Google Scholar 

  7. 7

    F. Robb, SPIE 775, 89 (1987).

    Google Scholar 

  8. 8

    M. T. Postek, and D. C. Joy, 92, 205 (1987).

  9. 9

    J. C. Russ, B. W. Dudley, and S. K. Jones, SPIE 1464, 10 (1991).

    Google Scholar 

  10. 10

    A. Wagner, S. Cohen, P. Longo, P. Blauner, to appear in J. Vac. Sci. Technol., Nov/Dec 1995.

  11. 11

    S. J. Erasmus, J. Vac. Sci. Technol 5, 409 (1987).

    CAS  Article  Google Scholar 

  12. 12

    N. Samoto, R. Shimizu, and H. Hashimoto, J. J. Appl. Phys. 24, 482 (1985).

    CAS  Article  Google Scholar 

  13. 13

    H. Yamashita, K. Nakajima, and H. Nozue, J. Vac. Sci. Technol. 12, 3591 (1994).

    CAS  Article  Google Scholar 

  14. 14

    F. Mizuno and S. Yamada, to appear in J. Vac. Sci. Technol., Nov/Dec 1995.

  15. 15

    H. Ban, J. Nakamura, K. Deguchi, and A. Tanaka, J. Vac. Sci. Technol. 12, 3905 (1994).

    CAS  Article  Google Scholar 

  16. 16

    S. Matsui, Nanotechnology 4, 170 (1993).

    CAS  Article  Google Scholar 

  17. 17

    M.J. Vasile, SPIE Vol 1671, 246 (1992).

    CAS  Google Scholar 

  18. 18

    T. B. Borzenko, Y. I. Koval, and V. A. Kudryashov, Micro. Engr. 23, 337 (1994).

    CAS  Article  Google Scholar 

  19. 19

    S. Chereckdjian and I. H. Wilson, Rad. Effects 98, 179 (1986).

    CAS  Article  Google Scholar 

  20. 20

    L. Merhari, C. Belorgeot, and J. P. Moliton, J. Vac. Sci. Technol. 9, 2511 (1991).

    CAS  Article  Google Scholar 

  21. 21

    W. L. Brown, Rad. Effects 98, 115 (1986).

    CAS  Article  Google Scholar 

  22. 22

    J. W. Ward, M. Utlaut, and R. L. Kubena, J.Vac. Sci. Technol. 5, 169 (1987).

    CAS  Article  Google Scholar 

  23. 23

    R. L. Kubena, F. P. Stratton, J. W. Ward, G. M. Atkinson, and R. J. Joyce, J. Vac. Sci. Technol. 7, 1798 (1989).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Wagner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wagner, A., Blauner, P., Longo, P. et al. Focused Ion Beam Metrology. MRS Online Proceedings Library 396, 675 (1995).

Download citation