Residual Stress Control by Ion Beam Assisted Deposition

Abstract

The origin of residual stresses were studied in both crystalline metallic films and amorphous oxide films made by ion beam assisted deposition (IBAD). Monolithic films of AI2O3 were deposited during bombardment by Ne, Ar or Kr over a narrow range of energies, E, and a wide range of ion-to-atom arrival rate ratios, R and were characterized in terms of composition, thickness, density, crystallinity, microstructure and residual stress. The stress was a strong function of ion beam parameters and gas content and compares to the behavior of other amorphous compounds such as MoSix and WS12.2 With increasing normalized energy (eV/atom), residual stress in crystalline metallic films (Mo, W) increases in the tensile direction before reversing and becoming compressive at high normalized energy. The origin of the stress is most likely due to densification or interstitial generation. Residual stress in amorphous films (Al2O3, MoSix and WSi2.2) is initially tensile and monotonically decreases into the compressive region with increasing normalized energy. The amorphous films also incorporate substantially more gas than crystalline films and in the case of Al2O3 are characterized by a high density of voids. Stress due to gas pressure in existing voids explains neither the functional dependence on gas content nor the magnitude of the observed stress. A more likely explanation for the behavior of stress is gas incorporation into the matrix, where the amount of incorporated gas is controlled by trapping.

This is a preview of subscription content, access via your institution.

References

  1. 1

    A. G. Evans and J. W. Hutchinson, Acta metall. mater. 43 p. 2,507 (1995).

    CAS  Article  Google Scholar 

  2. 2

    M. F. Doerner and W. D. Nix, Critical Reviews in Solid State and Materials Sciences 14 (3), p. 225 (1988).

    CAS  Article  Google Scholar 

  3. 3

    E. H. Hirsch and I. K. Varga, Thin Solid Films 69, p. 99 (1980).

    CAS  Article  Google Scholar 

  4. 4

    F. Seitz and J. S. Koehler, Solid State Phys. 69, p. 305 (1956).

    Google Scholar 

  5. 5

    D. W. Hoffman and J. A. Thornton, Thin Solid Films 40, p. 355 (1977).

    CAS  Article  Google Scholar 

  6. 6

    H. Windischmann, Critical Reviews in Solid State and Materials Science 17 (6), p. 547 (1992).

    Article  Google Scholar 

  7. 7

    H. Windischmann, J. Appl. Phys. 62(5), p. 1800 (1987).

    CAS  Article  Google Scholar 

  8. 8

    P. Sigmund, Topics in Applied Physics: Sputtering by Ion Bombardment 47, edited by R. Behrisch, (Springer-Verlag, Berlin, 1981).

  9. 9

    J. A. Thornton, J. Tabock and D. W. Hoffman, Thin Solid Films 64, p. 111 (1979).

    CAS  Article  Google Scholar 

  10. 10

    V. Dietz, P. Ehrhart, D. Guggi, H.-G. Haubold, W. Jäger, M Prieler and W. Schilling, Nucl. Instr. Meth. in Phys. Res. B59/60, p. 284 (1991).

    Article  Google Scholar 

  11. 11

    C. C. Fang, F. Jones and V. Prasad, J. Appl. Phys. 74(7), p. 4472 (1993).

    CAS  Article  Google Scholar 

  12. 12

    D. W. Hoffman and M. R. Gaerttner, J. Vac. Sci. Technol. 17(1), p. 425 (1980).

    CAS  Article  Google Scholar 

  13. 13

    A. Mashayekhi, L. Parfitt, C. Kalnas, J. W. Jones, G. S. Was and D. W. Hoffman, in Materials Modification by Energetic Atoms and Ions, edited by K. S. Grabowski, S. A. Barnett, S. M. Rossnagel and K. Wasa (Mater. Res. Soc. Proc. 268, Pittsburgh, PA, 1992), p. 203.

  14. 14

    D. S. Yee, J. Floro, D. J. Mikalsen, J. J. Cuomo, K. Y. Ann and D. A. Smith, J. Vac. Sci. Technol, A3(6), p. 2121 (1985).

    Article  Google Scholar 

  15. 15

    R. A. Roy, R. Petkie and A. Boulding, J. Mater. Res. 6 p. 80 (1991).

    CAS  Article  Google Scholar 

  16. 16

    J. A. Thornton, J. Vac. Sci. Technol. 11, p. 666 (1974).

    CAS  Article  Google Scholar 

  17. 17

    J. A. Thornton, J. Tabock and D. W. Hoffman, Thin Solid Films 64, p. 111 (1979).

    CAS  Article  Google Scholar 

  18. 18

    L. Parfitt, M. Goldiner, J. W. Jones and G. S. Was, J. Appl. Phys. 77(7) p. 3,029 (1995).

    CAS  Article  Google Scholar 

  19. 19

    A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (John Wiley and Sons, New York, 1956).

  20. 20

    F. M. D’Heurle and J. M. E. Harper, Thin Solid Films 171, p. 81 (1989).

    Article  Google Scholar 

  21. 21

    J. J. Cuomo, J. M. E. Harper, C. R. Guamieri, D. S. Yee, L. J. Attanasio, J. Angilello and C. T. Wu, J. Vac. Sci. Technol. 20(3) p. 349 (1982).

    CAS  Article  Google Scholar 

  22. 22

    K.-H. Müller, J. Appl. Phys. 62(5) p. 1,796 (1987).

    Article  Google Scholar 

  23. 23

    P. R. Kazansky, L. Hultman, I. Ivanov and J.-E. Sundgren, J. Vac. Sci. Technol. A11(4), p. 1426 (1993).

    Article  Google Scholar 

  24. 24

    C. Ronchi, J. Nucl. Mater. 96, p. 314 (1981).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. S. Was.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Was, G.S., Jones, J.W., Parfitt, L. et al. Residual Stress Control by Ion Beam Assisted Deposition. MRS Online Proceedings Library 396, 479 (1995). https://doi.org/10.1557/PROC-396-479

Download citation