Electron cyclotron resonance etching characteristics of GaN in plasmas with and without hydrogen


Electron cyclotron resonance (ECR) plasma etching characteristics of gallium nitride (GaN) are investigated using low pressure (4-10 mTorr) SiCl4/Ar and Cl2/H2/Ar ECR discharges. The purpose of this effort is to develop a dry etching process for making laser mirrors on GaN and to examine dry etching processes of GaN that do not require hydrogen, which is known to cause carrier compensation in GaN. The etch rate is found to increase near-linearly with increasing DC bias, and a minimum DC bias of 100V is required to initiate etching in SiCl4/Ar. We have also found that the material quality significantly affects the etch rate. The latter decreases with x-ray rocking curve half-width and increases with defect density. A reasonable etch rate of 660Ǻ/min and good surface morphologies obtained in SiCl/Ar ECR etching make this process suitable for gate recess of an FET. An etch rate of 5270Ǻ/min has been achieved in Cl2/H2/Ar plasmas. This is the highest reported etch rate of GaN so far. The smooth and vertical etch sidewalls (etch to mask selectivity of 16 is obtained) make this process promising for dry-etched laser mirrors on GaN.

This is a preview of subscription content, access via your institution.


  1. 1

    W. Qian, M. Skowronski, K. Doverspike, L. B. Rowland, and D. K. Gaskill, J. Cryst. Growth 151, 396 (1995).

    Google Scholar 

  2. 2

    S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1678 (1994).

    Article  Google Scholar 

  3. 3

    M. Asif Khan, J. N. Kuznia, D. T. Olson, J. M. Van Hove, M. Blasingame and L. F. Reitz Appl. Phys. Lett. 60, 2917 (1992).

    Article  Google Scholar 

  4. 4

    S. Nakamura, Jpn. J. Appl. Phys. 30, L1620 (1991).

  5. 5

    S. D. Hersee, J. Ramer, K. Zheng, C. Kranenberg, K. Malloy, M. Banas, and M. Goorsky, to be published in J. of Electronics Materials, November 1995.

    CAS  Article  Google Scholar 

  6. 6

    G. F. McLane, L. Casas, S. J. Pearton, and C. R. Abernathy, Appl. Phys. Lett. 66, 3328 (1995).

    CAS  Article  Google Scholar 

  7. 7

    R. J. Shul, S. P. Kilcoyne, M. Hagerott Crawford, J. E. Parmeter, C. B. Vartuli, C. R. Abernathy, and S. J. Pearton, Appl. Phys. Lett. 66, 1761 (1995).

    CAS  Article  Google Scholar 

  8. 8

    I. Adesida, A. T. Ping, C. Youtsey, T. Dow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, Appl. Phys. Lett. 65, 889 (1994).

    CAS  Google Scholar 

  9. 9

    A. T. Ping, I. Adesida, M. A. Khan, Appl. Phys. Lett. 67, 1250 (1995).

    CAS  Article  Google Scholar 

  10. 10

    S. J. Pearton, C. R. Abernathy, C. B. Vartuli, J. D. Mackenzie, R. J. Shul, R. G. Wilson, and J. M. Zavada, Electron. Lett. 31, 836 (1995).

    CAS  Article  Google Scholar 

  11. 11

    J. A. Van Vechten, J. D. Zook, R. D. Horning and B. Goldenberg, Jpn. J. Appl. Phys. 31, 3662 (1992).

    Article  Google Scholar 

  12. 12

    S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31, L1258 (1992).

    Article  Google Scholar 

  13. 13

    L. F. Lester, W. J. Schaff, S. D. Offsey, and L. F. Eastman, IEEE Photon. Technol. Lett., 3, 403 (1991).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to L. Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, L., Ramer, J., Brown, J. et al. Electron cyclotron resonance etching characteristics of GaN in plasmas with and without hydrogen. MRS Online Proceedings Library 395, 763–767 (1995). https://doi.org/10.1557/PROC-395-763

Download citation