Light Generating Carrier Recombination and Impurities in Wurtzite GaN/Al2O3 Grown by MOCVD

Abstract

We have studied by photoluminescence (PL) and optically detected magnetic resonance (ODMR) un-doped, n-doped and p-doped thin wurtzite GaN layers grown by metal-organic chemical vapor deposition on sapphire substrates. From the PL data for free excitons an accurate value of the free A-type exciton binding energy and a more accurate estimate for the hole effective mass is deduced. The localization energies of the Mg and the Zn neutral acceptor bound excitons are found to be in good agreement with Haynes’ rule. A sharp emission line, assigned to free electron recombination at a 116 meV shallow acceptor, together with three additional weak zero-phonon-lines (ZPLs), assigned to distant donor-acceptor (DA) pairs, are reported for the first time. The chemical nature of this acceptor and that of three residual donors, inferred from the DA pair ZPLs, is discussed. The effects of strain in thin GaN layers on a dissimilar substrate like sapphire are emphasized with respect to the energetic position of narrow PL lines. The ODMR data obtained for undoped, Mg-doped and Zn-doped GaN layers provide insight into the recombination mechanisms responsible for the broad yellow (2.25 eV), the violet (3.15 eV) and the blue (2.8 eV) PL bands, respectively. The ODMR results for Mg and Zn also show that these acceptors do not behave effective mass like and indicate that the acceptor hole is mainly localized in the nearest neighbor shell surrounding the acceptor core.

This is a preview of subscription content, access via your institution.

References

  1. 1

    S. Nakamura, T. Mukai, M. Senoh and I. Iwasa, Jpn. J. Appl. Phys. 31, L139 (1992)

    CAS  Article  Google Scholar 

  2. 2

    H.G. Grimmeiss and H. Koelmans, Z. Naturforschung 14a, 264 (1959)

    Article  Google Scholar 

  3. 3

    H.P. Maruska and J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)

    Article  Google Scholar 

  4. 4

    R. Dingle, D.D. Sell, S.E. Stokowski and M. Ilegems, Phys. Rev. B 4, 1211 (1971)

    CAS  Google Scholar 

  5. 5

    H. Amano, N. Sawaki and I. Akasaki, Appl. Phys. Lett. 48, 353 (1986)

    CAS  Article  Google Scholar 

  6. 6

    H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Japanese J. Appl. Phys. 28, L 2112 (1989)

    CAS  Google Scholar 

  7. 7

    I. Akasaki and H. Amano, Inst. Phys. Conf. Ser. 129, 851 (1993)

    CAS  Article  Google Scholar 

  8. 8

    I. Akasaki and H. Amano, J. Electrochem. Soc. 141, 2266 (1994)

    CAS  Article  Google Scholar 

  9. 9

    S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)

    CAS  Article  Google Scholar 

  10. 10

    S. Nakamura, T. Mukai and M. Senoh, J. Appl. Phys. 76, 8189 (1994)

    CAS  Article  Google Scholar 

  11. 11

    S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, Japanese J. Appl. Phys. 34, L 797 (1995)

    Article  Google Scholar 

  12. 12

    T. Detchprohm, K. Hiramatsu, K. Itoh and I. Akasaki, Japanese J. Appl. Phys. 31, L 1454 (1992)

    CAS  Article  Google Scholar 

  13. 13

    W. Shan, T. J. Schmidt, X. H. Yang, S. J. Hwang and J. J.Song, Appl. Phys. Lett. 66, 985 (1995)

  14. 14

    C. Merz, M. Kunzer and U. Kaufmann, submitted to Phys. Rev. B

  15. 15

    L. Eckey, L. Podlowski, A. Göldner, A. Hoffmann, I. Broser, B. K. Meyer, D. Volm, T. Streibl, T. Detchprohm, H. Amano, I. Akaski, Int. Conf. “Silicon Carbide and Related Materials”, Kyoto (Japan), Sept. 18–21, 1995, in press

    CAS  Article  Google Scholar 

  16. 16

    B. K. Meyer, D. Volm, A. Graber, H. C. Alt, T. Detchprohm, H. Amano and I. Akasaki, Solid State Commun. 95, 597 (1995)

  17. 17

    H. C. Alt, B. K. Meyer, D. Volm, A. Graber, M. Drechsler, D. M. Hofmann, T. Detchprohm, H. Amano and I. Akasaki, Int. Conf. “Defects in Semiconductors”, Sendai (Japan), July 23–28, 1995, m pre

  18. 18

    Strictly speaking, the decomposition of the in plane biaxial stess also contains an orthorhombic component. However, the major effect on the positions of sharp PL lines is due to the hydrostatic and the tensile axial stress components.

    Article  Google Scholar 

  19. 19

    T. Skettrup, M. Suffczynski and W. Gorzkowski, Phys. Rev B 4, 512 (1971)

    CAS  Article  Google Scholar 

  20. 20

    D. M. Eagles, J. Phys. Chem. Solids 16, 76 (1960)

    CAS  Article  Google Scholar 

  21. 21

    R. Niebuhr, K. Bachern, K. Dombrowski, M. Maier, W. Pletschen, and U. Kaufmann, J. Electronic Mat. 24, 1531 (1995)

    CAS  Article  Google Scholar 

  22. 22

    C. R. Abernathy, J. D. MacKenzie and S. J. Pearton, Appl. Phys. Lett. 66, 1969 (1995)

    Article  Google Scholar 

  23. 23

    J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994)

  24. 24

    J. Neugebauer and C. G. Van de Walle, 22nd Int. Conf. “The Physics of Semiconductors”, Vancouver, Canada 15. - 19. 8. 1994, Ed. D. J. Lockwood (World Scientific Publishing, Singapore, 1995) Vol 3 pp 2327

  25. 25

    P. Boguslawski, E. Briggs and J. Bernholc, see Ref. 22, pp 2331

    Article  Google Scholar 

  26. 26

    P. Boguslawski, E. Briggs and J. Bernholc, Phys. Rev. B 51, 17255 (1995)

    CAS  Article  Google Scholar 

  27. 27

    P. Perlin, T. Suski, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, S. Porowski, P. Boguslawski, J. Bernholc, J. C. Chervin, A. Polian, and T. D. Moustakas, Phys. Rev. Lett. 75, 296 (1995)

    Article  Google Scholar 

  28. 28

    E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, J. A. Freitas, Jr. M. Asif Khan, D. T. Olson, J. N. Kuzma and D. K. Wickenden, Phys. Rev. B 51, 13326 (1995)

    CAS  Article  Google Scholar 

  29. 29

    R. Dingle and M. Ilegems, Solid State Commun. 9, 175 (1971)

    CAS  Article  Google Scholar 

  30. 30

    T. Ogino and M. Aoki, Japanese J. Appl. Phys. 19, 2395 (1980)

    CAS  Article  Google Scholar 

  31. 31

    J. Baur, U. Kaufmann, H. Kunzer, J. Schneider, H. Amano, I. Akasaki, T. Detchprohm and K. Hiramatsu, Appl. Phys. Lett. 67, 1140 (1995)

  32. 32

    M. Kunzer, U. Kaufmann, K. Maier, J. Schneider, N. Herres, I. Akasaki and H. Amano, Mat. Sc. Forum 143–147, 87 (1994)

  33. 33

    M. Kunzer, PhD Thesis, University of Freiburg, 1995

    Article  Google Scholar 

  34. 34

    W. E. Carlos, J. A. Freitas, Jr., M. Asif Khan, D. T. Olson and J. N. Kuznia, Phys. Rev. B 48, 17878 (1993)

    Article  Google Scholar 

  35. 35

    Le Si Dang, K. M. Lee, G. D. Watkins and W. J. Choyke, Phys. Rev. Lett. 45, 390 (1980)

    CAS  Article  Google Scholar 

  36. 36

    O. F. Schirmer, J. Phys. Chem. Solids 29, 1407 (1968)

    CAS  Article  Google Scholar 

  37. 37

    D. Zwingel and F. Gärtner, Solid State Commun. 14, 45 (1974)

    CAS  Article  Google Scholar 

  38. 38

    J. Schneider, W. C. Holton and T. L. Estle, Phys. Lett. 5, 312 (1963)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to U. Kaufmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kaufmann, U., Kunzer, M., Merz, C. et al. Light Generating Carrier Recombination and Impurities in Wurtzite GaN/Al2O3 Grown by MOCVD. MRS Online Proceedings Library 395, 633–643 (1995). https://doi.org/10.1557/PROC-395-633

Download citation