Structural Defects in Heteroepitaxial and Homoepitaxial GaN


The microstructure and characteristic defects of heteroepitaxial GaN films grown on sapphire using molecular beam epitaxy (MBE) and metal-organic-chemical-vapor-deposition (MOCVD) methods and of homoepitaxial GaN grown on bulk substrates are described based on transmission electron microscopy (TEM), x-ray diffraction, and cathodoluminescence (CL) studies. The difference in arrangement of dislocations along grain boundaries and die influence of buffer layers on the quality of epitaxial films is described. The structural quality of GaN epilayers is compared to diat of bulk GaN crystals grown from dilute solution of atomic nitrogen in liquid gallium. The full width at half maximum (FWHM) of the x-ray rocking curves for these crystals was in the range of 20–30 arc sec, whereas for the heteroepitaxially grown GaN the FWHM was in the range of 5–20 arc min. Homoepitaxial MBE grown films had FWHMs of about 40 arc sec. The best film quality was obtained for homoepitaxial films grown using MOCVD; these samples were almost free from extended defects. For the bulk GaN crystals a substantial difference in crystal perfection was observed for the opposite sides of the plates shaped normal to the c direction. On one side the surface was almost atomically flat, and the underlying material was free of any extended structural defects, while the other side was rough, with a high density of planar defects. This difference was related to the polarity of the crystal. A large difference in crystal stoichiometry was also observed within different sublayers of the crystals. Based on convergent beam electron diffraction and cathodoluminescence, it is proposed that GaN antisite defects are related to the yellow luminescence observed in these crystals.

This is a preview of subscription content, access via your institution.


  1. 1

    G. Martin, S. Strite, A. Botchkarev, et al. J. Elect. Mat. 24, 225 (1995).

    CAS  Article  Google Scholar 

  2. 2

    S. Nakamura, T. Mukai, M. Senoh, Appl. Phys. Lett., 64, 1687 (1994).

    CAS  Article  Google Scholar 

  3. 3

    M.E. Lin, G. Xue, G.L. Zhou, J.E. Green, and H. Morkoc, Appl. Phys. Lett., 63, 932 (1993).

    CAS  Article  Google Scholar 

  4. 4

    C. Wang and R.F. Davis, Appl.Phys. Lett. 63, 990 (1993).

    CAS  Article  Google Scholar 

  5. 5

    N. Newman, J. Ross and M. Rubin, Appl. Phys. Lett. 62, 1242 (1993).

    CAS  Article  Google Scholar 

  6. 6

    M. Mizuta, S. Fujieta, Y. Matsumoto, and T. Kawamura, Jap. J. Appl. Phys. 25, L945 (1986).

    CAS  Article  Google Scholar 

  7. 7

    S.D. Lester, F.A. Ponce, M.G. Craford, and D.A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995).

  8. 8

    S. Porowski, I. Grzegory, and J.Jun in “High Pressur Chemical Synthesis” edts. J. Jurczak and B. Baranowski, Elsevier Science Publishers, B.V. (1989) p. 21.

  9. 9

    S. Porowski and I. Grzegory, in “Properties of Group III Nitrides” ed. James H. Edgar, EMIS Data-reviews Series No. 11 (1994), p. 76.

    Article  Google Scholar 

  10. 10

    Z. Liliental-Weber, H. Sohn, N. Newman, and. J. Washburn, J. Vac.Sci.Technol. B 13 (4), 1578 (1995).

    CAS  Article  Google Scholar 

  11. 11

    H. Okumura, J. Cryst. Growth 136, 361 (1994).

    Google Scholar 

  12. 12

    D. Hull and D.J. Bacon, “Introduction to Dislocations” International Series on Materials Science and technology, vol. 37, Pergamon International Library, Publisher: R. Maxwell, M.C. (1985).

    CAS  Article  Google Scholar 

  13. 13

    X.W. Lin, M. Behar, R. Maltez, W. Swider, Z. Liliental-Weber, and J. Washburn, Appl. Phys. Lett., 67, 2699 (1995).

    CAS  Article  Google Scholar 

  14. 14

    N. Newman, T.C. Fu, X. Liu, Z. Liliental-Weber, M. Rubin, J.S. Chan, E. Jones, J.T. Ross, I. Tidswell, K.M. Yu, N. Cheung, and E.R. Weber, Mat. Res. Symp. Proc. 339, 483 (1994).

  15. 15

    E. Jones, N. Newman, A. Gassmann, A. Anders, L. Schloss, X. Liu, J. Chan, Ch. Kisielowski, M. Rubin, E.R. Weber, and N. Cheung-These Proceedings

    CAS  Article  Google Scholar 

  16. 16

    W. Qian, M. Skowronski, K. Doverspike, L.B. Rowland, and D.K. Gaskill, J. Crystall Growth 151, 396 (1995).

    CAS  Article  Google Scholar 

  17. 17

    W. Qian, G.S. Roher, M. Skowronski, K. Doverspike, L.B. Rowland, and D.K. Gaskill, Appl. Phys. Lett. 67, 2284 (1995).

    CAS  Article  Google Scholar 

  18. 18

    M. Leszczynski, T. Suski, P. Perlin, I. Grzegory, M. Bockowski, J. Jun, S. Porowski, and J. Major, J. Phys. D. Appl. Phys. 28, A 149 (1995).

  19. 19

    Z. Liliental-Weber, C. Kisielowski, Y, Chen and J. Washburn, I. Grzegory, M. Bockowski, J. Jun, and S. Porowski, Appl. Phys. Lett., in press.

  20. 20

    Z. Liliental-Weber, C. Kisielowski, X. Liu, L. Schloss, J. Washburn, E.R. Weber, I. Grzegory, M. Bockowski, J. Jun, T. Suski, and S. Porowski, Solid State Electonics, in press.

  21. 21

    Z. Liliental-Weber, C. Kisielowski, X. Liu, L. Schloss, J. Washburn, E.R. Weber, I. Grzegory, M. Bockowski, J. Jun, T. Suski, J. Baranowski, S. Porowski, J. Bernholc, and P. Boguslawski-to be published.

    CAS  Article  Google Scholar 

  22. 22

    E.R.Weber, H. Ennen, U. Kaufmann, J. Windscheif, J. Schneider and T. Wosinski, J. Appl. Phys. 53, 6140 (1982).

    CAS  Article  Google Scholar 

  23. 23

    P. Perlin, T. Suski, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, S. Porowski, P. Boguslawski, J. Bernholc, J.C. Chervin, A. Polian, and T.D. Moustakas, Phys. Rev. Lett. 75, 296 (1995).

  24. 24

    A. Gassmann, T. Suski, Z. Liliental-Weber, N. Newman, H. Helawa, I. Grzegory, M. Bockowski, J. Jun, and S. Porowski, to be published.

Download references

Author information



Corresponding author

Correspondence to Zuzanna Liliental-Weber.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liliental-Weber, Z., Ruvimov, S., Kisielowski, C. et al. Structural Defects in Heteroepitaxial and Homoepitaxial GaN. MRS Online Proceedings Library 395, 351–362 (1995).

Download citation