Effect of Carrier Gas on the Surface Morphology and Mosaic Dispersion for GaN Films by Low-Pressure MOCVD


Low-pressure metal-organic chemical vapor deposition (MOCVD) has been used to deposit unnucleated and self-nucleated GaN thin films on (00.1) sapphire substrates. For the self-nucleated films, initial layers were grown at 540°C using trimethylgallium and ammonia as elemental sources and either nitrogen or hydrogen as the carrier gas. Using these same gas phase conditions, overlayers on native (00.1) sapphire substrates or the GaN-nucleated (00.1) sapphire substrates were deposited at 1025°C. The surface morphology and mosaic dispersion of these unnucleated and self-nucleated GaN thin films have been surveyed by a combination of real space images from atomic force microscopy and reciprocal space intensity data from X-ray scattering measurements. As expected, the unnucleated GaN films show a large-grained hexagonal relief, typical of three-dimensional island growth. However, the self-nucleated films are shown to be dense mosaics of highly oriented islands, emblematic of a more two-dimensional growth.

This is a preview of subscription content, access via your institution.


  1. 1

    G. Strang & G. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, NJ (1973).

    CAS  Article  Google Scholar 

  2. 2

    H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986).

    CAS  Google Scholar 

  3. 3

    D. K. Wickenden, T. J. Kistenmacher, W. A. Bryden, J. S. Morgan, and A. Estes Wickenden, Mat. Res. Soc. Symp. Proc. 221, 167 (1991).

    Article  Google Scholar 

  4. 4

    S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).

    CAS  Google Scholar 

  5. 5

    M. A. Khan, J. N. Kuznia, J. M. Van Hove, D. T. Olson, S. Krishnankutty, and R. M. Kolbas, Appl. Phys Lett. 58, 526 (1991).

    CAS  Google Scholar 

  6. 6

    B. Goldenberg, J. D. Zook, and R. J. Ulmer, Appl. Phys. Lett. 62, 381 (1993).

    Google Scholar 

  7. 7

    W. E. Piano, J. S. Major Jr., D. F. Welch, and J. Speirs, Electron. Lett. 30, 2079 (1994).

    CAS  Google Scholar 

  8. 8

    K. Doverspike, L. B. Rowland, D. K. Gaskill, and J. A. Freitas, Jr., J. Electron. Mat. 24, 269 (1995).

    CAS  Google Scholar 

  9. 9

    H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).

    Google Scholar 

  10. 10

    M. Ilegems, J. Crystal Growth 13/14, 360 (1972).

    CAS  Google Scholar 

  11. 11

    D. K. Wickenden, K. R. Faulkner, R. W. Brander, and B. J. Isherwood, J. Crystal Growth 9, 158 (1971).

    CAS  Google Scholar 

  12. 12

    D. K. Wickenden, C. B. Bargeron, W. A. Bryden, J. Miragliotta, and T. J. Kistenmacher, Appl. Phys. Lett. 65, 2024 (1994).

    CAS  Google Scholar 

  13. 13

    See, for example, D. Kapolnek, X. H. Xu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 67, 1541 (1995).

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to T. J. Kistenmacher.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kistenmacher, T., Wickenden, D., Hawley, M. et al. Effect of Carrier Gas on the Surface Morphology and Mosaic Dispersion for GaN Films by Low-Pressure MOCVD. MRS Online Proceedings Library 395, 261–266 (1995). https://doi.org/10.1557/PROC-395-261

Download citation