AlN Films Deposited by LP-MOCVD Atomic Layer Deposition at Lower Temperatures Using DMEAA and Ammonia


We have investigated the deposition of AlN thin films on Si(100), Al2O3(0001), and Al2O3(0112) substrates at lower temperatures (523–723 K) using a novel aluminum source, dimethylethylamine:alane (DMEAA), with ammonia as a nitrogen source in a low-pressure MOCVD atomic layer growth process. At reactor pressures of 25 and 50 Torr a four-step sequence of reactant flow steps separated by flush steps was cycled. We observed a tendency toward a self-limiting growth rate as the DMEAA step flow time was increased. The deposition uniformity was observed to be dependent on temperature and non-uniform deposition occurred at higher temperatures. The microstructure and crystalline orientation were examined using x-ray diffraction and crystalline A1N films were deposited at temperatures as low as 573 K. Crystallite size decreased with substrate temperature and at 523 K. amorphous films were deposited. At T > 650 K preferentially oriented crystalline films were deposited with orientations of Si(100)//AIN(0001), Al2O3(0001)//AIN(0001), Al2O3(0112)//AIN(11 20).

This is a preview of subscription content, access via your institution.


  1. 1

    B.S. Meyerson, E. Ganin, D.A. Smith, and T.N. Nguyen, J. Electrochem. Soc. 133, p. 1232–1235 (1986).

    CAS  Article  Google Scholar 

  2. 2

    F. Hasegawa, T. Takahashi, K. Kubo and Y. Nannichi, Jpn. J. Appl. Phys. 26, p. 1555 (1987).

    Google Scholar 

  3. 3

    F. S. Ohuchi and P. E. Russell, J. Vac. Sci. Tech. A 5, p. 1630 (1987).

    Google Scholar 

  4. 4

    T. L. Chu and J. R.W. Keim, J. Electrochem. Soc. 122, p. 997 (1975).

    CAS  Google Scholar 

  5. 5

    Z. Sitar, M. J. Paisley, B. Yan, R. F. Davis, J. Ruan and J. W. Choyke, Thin Solid Films 200, p. 311 (1991).

    CAS  Google Scholar 

  6. 6

    M. A. Khan, J. N. Kuznia, R. A. Skogman, D. T. Olson, M. MacMillan and W. J. Choyke, Appl. Phys. Lett. 61, p. 2539 (1992).

    CAS  Google Scholar 

  7. 7

    H. M. Manasevit, F. M. Erdmann and W. I. Simpson, J. Electrochem. Soc. 118, p. 1864 (1971).

    Google Scholar 

  8. 8

    G. B. Stringfellow, Organometallic vapor-phase epitaxy: Theory and practice, (Academic Press Inc., San Diego CA, 1989).

    CAS  Google Scholar 

  9. 9

    C. C. Amato, J. B. Hudson and L. V. Interrante, Mat. Res. Soc. Symp. Proc. 282, p. 611 (1993).

    Google Scholar 

  10. 10

    W. L. Gladfelter, D. C. Boyd, J.-W. Hwang, R. T. Haasch, J. F. Evans, K.-L. Ho and K. Jensen, Mat. Res. Soc. Symp. Proc. 131, p. 447 (1993)

    CAS  Google Scholar 

  11. 11

    L. V. Interrante, W. Lee, M. McConnell, N. Lewis and E. Hall, J. Electrochem. Soc. 136, p. 472 (1989).

    CAS  Google Scholar 

  12. 12

    R. G. Gordon, U. Riaz and D. M. Hoffman, J. Mater. Res. 7, p. 1679 (1992).

    CAS  Google Scholar 

  13. 13

    J. K. Ruff, Inorg. Synth. 9, p. 30 (1967).

  14. 14

    H. Liu, Ph.D. Thesis, University of Washington (1995).

    CAS  Google Scholar 

  15. 15

    W. L. Gladfelter, D. C. Boyd and K. F. Jensen, Chem. Mater. 1, p. 339 (1989).

    Google Scholar 

  16. 16

    N. Ohtsuka, T. Ashino, M. Ozeki and K. Nakajima, in Gallium Arsenide and Related Compounds 1992, edited by T. Ikegami, F. Hasagawa and Y. Takeda, (Proceedings of the 19th International Symposium, IOP, Karuizawa, p. 925)

    CAS  Google Scholar 

  17. 17

    J. E. House, J.of Organomet. Chem. 263, p. 267 (1984).

    CAS  Google Scholar 

  18. 18

    D. M. Frigo, G. J. M. v. Eijden, P. J. Reuvers and C. J. Smit, Chem. Mater. 6, p. 190 (1994).

    Google Scholar 

  19. 19

    C. R. Abernathy, J. Vac. Sci. Technol. A 11, p. 869 (1993).

    CAS  Google Scholar 

  20. 20

    W. S. Hobson, T. D. Harris, C. R. Abernathy and S. J. Pearton, Appl. Phys. Lett. 58, p. 77 (1991).

    CAS  Google Scholar 

  21. 21

    K. Fujii, I. Suemune and M. Yamanishi, Appl. Phys. Lett. 62, p. 1420 (1993).

    Google Scholar 

  22. 22

    M. A. Khan, D. T. Olson and J. N. Kuznia, Appl. Phys. Lett. 65, p. 64 (1994).

    Google Scholar 

  23. 23

    J. N. Kidder, J. S. Kuo, A. Ludviksson, T. P. Pearsall, J. W. Rogers, J. M. Grant, L. R. Allen and S. T. Hsu, J. Vac. Sci. Technol. A 13, p. 711 (1995).

  24. 24

    D. C. Bertolet, H. Lui and J. W. Rogers, Jr., J. Appl. Phys. p. (1994).

    CAS  Google Scholar 

  25. 25

    M. A. Tischler and S. M. Bedair, J. Cryst. Growth 77, p. 89 (1986).

    Google Scholar 

  26. 26

    M. A. Tischler and S. M. Bedair, in Atomic Layer Epitaxy, edited by T. Suntola and M. Simpson (Blackie and Sons, London, 1990) p. 145.

    CAS  Google Scholar 

  27. 27

    J. D. Dapkus, B. Y. Maa, Q. Chen, W. G. Jeong and S. P. DenBaars, J. Cryst. Growth 107, p. 73 (1991).

    CAS  Google Scholar 

  28. 28

    C. J. Sun, P. Kung, A. Saxler, H. Ohsato, K. Haritos and M. Razeghi, J. Appl. Phys. 75, p. 3964 (1994).

    CAS  Google Scholar 

  29. 29

    J. K. Liu, K. M. Lakin and K. L. Wang, J. Appl. Phys. 46, p. 3703 (1975).

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to J.N. Kidder Jr..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kidder, J., Kuo, J., Pearsall, T. et al. AlN Films Deposited by LP-MOCVD Atomic Layer Deposition at Lower Temperatures Using DMEAA and Ammonia. MRS Online Proceedings Library 395, 249–254 (1995).

Download citation