Effect of Annealing and Passivation on the Electromigration and Linewidth Dependence

Abstract

Continued miniaturization of conductor geometry below 0.5μm has by a concomitant decrease in Al deposition temperature, typically below 300°C. The degree of reliability exhibited by these films is strongly dependent on the grain size distribution and metallurgical configuration. This investigation focuses on the impact of post-deposition processing on changes in conductor microstructure and electromigration for films deposited at low temperature. AlCu(l%)Si(l%) was deposited at 300°C on PECVD phosphosilicate glass. The impact of post-deposition thermal budget on the as deposited grain size and distribution, preferred orientation and stress/strain states were analyzed using scanning electron microscopy, X-Ray diffraction and bending beam technique, respectively. These characteristics were also measured on unpassivated films subjected to the same thermal budget as SiO2 passivated films so that the geometric confinement and Al-SiO2 surface interaction could be quantified. Electromigration characteristics were measured for linewidths in the range W=1.0μm to W=10μm, for passivated and unpassivated films. A direct correlation between passivation and grain size was observed for both failure modes. This paper will also discuss the relationship between film stress and preferred orientation, the observed failure modes and their linewidth dependence.

This is a preview of subscription content, access via your institution.

References

  1. 1

    L. Kisselgof, S.P. Baranowski, M.C. Broomfield, T. Spooner, L. Elliot, L. Brooke, J.R. Lloyd, SPIE V1805, Submicrometer Metallization (1992), 154–163.

    Google Scholar 

  2. 2

    A. Domenicucci, R.W. Vook, J.Vac.Sci.Technol. (1991), 581–585.

    Google Scholar 

  3. 3

    D.S. Gardner, H.P. Longworth, P.A. Flinn, VMIC Conf (1990), 243–253.

    Google Scholar 

  4. 4

    A.G. Dirks, R.A. Augur, A.E.M. De Veirman, Thin Solid Films, v246 (1994), 164–171.

    CAS  Article  Google Scholar 

  5. 5

    T. Kwok, K.K.Chan, J. Simko, J.Vac.Sci.Technol. A, V9, No.4 (1991), 2523–2526.

    CAS  Article  Google Scholar 

  6. 6

    M. Akiya, H. Nakamura, Y. Arita, J. Electrochem. Soc., V137,No.7, (1990), 2252–2256.

    CAS  Article  Google Scholar 

  7. 7

    K.P. Rodbell, D.B. Knorr, J.D.Mis, J. of Electronic Materials, V22, No.6, (1993), p597–606.

    CAS  Article  Google Scholar 

  8. 8

    J. Cho, C.V. Thompson, J. of Electronic Materials, V19, No.11, (1990), 1207–1212

    CAS  Article  Google Scholar 

  9. 9

    A.N. Campbell, R.E. Mikawa, D.B. Knorr, V22, No.6, (1993), 589–596.

  10. 10

    W. Baerg, K. Wu, P. Davies, G. Dao, D. Fraser, IEEE-IRPS, (1990), 119–123.

    Google Scholar 

  11. 11

    S.E. Babcock R.W. Balluffi, Acta Metall. V37, No.9, (1989), 2367–2376.

    CAS  Article  Google Scholar 

  12. 12

    C.L. Bauer, P.F. Tang, Defect and Diffusion Forum, V.66-69, (1989), 1143–1152.

    Google Scholar 

  13. 13

    P.S. Ho, M..A. Moske, C.K.Hu, SPIE V1805, Submicrometer Metallization (1992), 116–129.

    Google Scholar 

  14. 14

    P.R. Besser, Ph.D. Dissertation, Stanford University, (1993)

  15. 15

    A.P. Clarke, S. Saimoto, P. Ho, A1P Conference Proceedings 305, (1994), 126–136.

    CAS  Article  Google Scholar 

  16. 16

    G.L. Baldini, A. Scorzoni, IEEE-Trans on Electron Devices, V38, No.3, (1991), 469–475.

    CAS  Article  Google Scholar 

  17. 17

    N. Matsunaga, H. Shibata, K. Hashimoto, 1992 Symposium on VLSI Technology Digest of Technical Papers, 76–77.

    Google Scholar 

  18. 18

    P.R.Besser, S. Bader, R. Venkatraman J.C. Bravman, MRS Symp. Proc. V309, (1993), 255–260.

    CAS  Article  Google Scholar 

  19. 19

    C.J. Shute, J.B. Cohen, J. Mater. Res., Vol.6, No.5, (1991), 950–956.

    CAS  Article  Google Scholar 

  20. 20

    H.Z. Chew, C.A. Fieber, P. Kelley, T.T. Lai, V. Ryan, SPIE V1805, Submicrometer Metallization (1992), 164–168.

    Google Scholar 

  21. 21

    S.G.H. Anderson, I.S. Yeo, D. Jawarani, and P.S. Ho, SPIE V1805, Multilevel Interconnect (1993), 130–137.

    Google Scholar 

  22. 22

    S.G.H. Anderson, I.S. Yeo, P.S. Ho, S. Ramaswami, R. Cheung, MRS Symp. Proc. V309, (1993), 261–268.

    CAS  Article  Google Scholar 

  23. 23

    G. Grivina, C. Leathersich, H. Shin, W.G. Cowden, J. Vac.SCi. Technol. B, VII, No.1, (1993), 55–60.

    Article  Google Scholar 

  24. 24

    Electromigration in Thin Films, by F.M. d’Heurle, P.S. Ho.

  25. 25

    B.N. Agarwala, M.J. Attardo, A.P. Ingraham, J. Appl. Phys., V41, No.10, (1970), 3954–3955.

    CAS  Article  Google Scholar 

  26. 26

    M.J. Attardo, R. Rutledge, R.C. Jack, J. Appl. Phys., V42, No.11, (1971), 4343–4349.

    CAS  Article  Google Scholar 

  27. 27

    E.Arzt, W.D. Nix, J. Mater. Res. V6, No.4, (1991), 731–736

    CAS  Article  Google Scholar 

  28. 28

    M.L Dreyer, C.J. Varker, Appl. Phys. Lett., V60, No.15, (1992), 1860–1862.

    CAS  Article  Google Scholar 

  29. 29

    Kardiawarman et.al., Applications of a multifiber collimating lens to thin film structure analysis, SPIE proceedings, 1995.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carnes, R.O., Lee, C.H., Keating, P.T. et al. Effect of Annealing and Passivation on the Electromigration and Linewidth Dependence. MRS Online Proceedings Library 391, 435 (1995). https://doi.org/10.1557/PROC-391-435

Download citation