A Highly Reliable Al Line with Controlled Texture and Grain Boundaries


In order to clarify the relationship between Al line reliability and film microstructure, especially grain boundary structure and crystal texture, we have tested three kinds of highly textured Al lines, namely, single-crystal Al line, quasi-single-crystal Al line and hypertextured Al line, and two kinds of conventional Al lines deposited on TiN/Ti and on SiO2. Consequently, the empirical relation between the electromigration (EM) lifetime of Al line † and the (111) full width at half maximum (FWHM) value ω is described by † ω-2 [1]. This improvement of Al line reliability results from as following reasons; firstly, homogeneous microstructure and high activation energy of 1.28eV for the single-crystal Al line (ω=0.18°); secondly, sub-grain boundaries which consisted of dislocation arrays found in the quasi-single-crystal Al line (ω=0.26°) has turned out to be no more effective mass transport paths because dislocation lines are perpendicular to the direction of electron wind. Although there exist plural grain boundary diffusion paths in the newly developed hypertextured Al line (ω=0.5°) formed by using an amorphous Ta-Al underlayer {1], the vacancy flux along the line has been suppressed to the same order of magnitude of single crystal line. It has been clarified that the decrease of FWHM value has promoted the formation of sub-grain boundaries and low-angle boundaries with detailed orientation analysis of individual grains in the hypertextured film. The longer EM lifetime for the hypertextured Al line is considered to be due to the small grain boundary diffusivities for these stable grain boundaries, and this diffusivity reduction resulted in the suppression of void/hillock pair in the Al lines. These results have confirmed that controlling texture and/or grain boundary itself is a promising approach to develop reliable Al lines which withstand higher current densities required in future ULSIs.

This is a preview of subscription content, access via your institution.


  1. 1

    H.Toyoda, T.Kawanoue, M.Hasunuma, H.Kaneko and M.Miyauchi, Proc.32nd Ann. Int’l.Reliab.Phys.Symp IEEE, 178(1985)

    Google Scholar 

  2. 2

    J.M.Towner, A.G.Darks and T.Tien, Proc.24th Ann. Int’l. Reliab.Phys.Symp., IEEE, 7(1986)

    Google Scholar 

  3. 3

    T.Hosoda, H.Yagi and T.Tstuchikawa, Proc.27th Ann. Int’l. Reliab.Phys.Symp., IEEE, 202(1989)

    Google Scholar 

  4. 4

    J.Onuki, Y.Koibuchi, S.Fukada, M.Suwa, Y.Misawa and T.Itagaki, IEDM Tech. Dig.JEEE, 454(1988)

    Google Scholar 

  5. 5

    S.Ogawa and H.Nishimura, IEDM Tech.Dig.,IEEE, 277(1991)

    Google Scholar 

  6. 6

    T.Lin, K.Y.Ahn, J.M.E.Harper and P.N.Chaloux, IEEE VMIC Conf., 76(1988)

    Google Scholar 

  7. 7

    K.Hinode and Y.Honma, Proc.28th Ann. Int’l. Reliab.Phys.Symp., IEEE, 25(1990)

    Google Scholar 

  8. 8

    P.S.Ho, J.K.Howard and J.F.White, J.Appl.Phys., 49, 4083(1978)

    Article  Google Scholar 

  9. 9

    T.Kawanoue, H,Kaneko, M.Hasunuma and M.Miyauchi, J.Appl.Phys., 74(7), 4423(1993)

    Article  Google Scholar 

  10. 10

    S.Vaidya and A.K.Shinha, Thin Solid Films, 75, 253(1981)

    CAS  Article  Google Scholar 

  11. 11

    D.B.Knorr and T.M.Lu, Appl.Phys.Lett., 54, 2210(1989)

    CAS  Article  Google Scholar 

  12. 12

    S.A.Lytle and A.S.Oates, J.Appl.Phys., 71(1), 174(1992)

    Article  Google Scholar 

  13. 13

    T.N.Marieb, E.Abratowski, J.C.Bravman, M.Madden and P.Flinn, AIP Conf. Proc. No.305 (edited by P.S.Ho, C.Y.Li and P.Totta), 1(1994)

  14. 14

    J.T.Yue, W.P.Funsten and R.V.Taylar, Proc.23th Ann. Int’l. Reliab.Phys.Symp., IEEE, 1 (1985)

    Google Scholar 

  15. 15

    Tanikawa, H.Okabayashi, H.Mori and H.Fujita, Proc.28th Ann. Int’l. Reliab. Phys. Symp., IEEE, 209(1990)

  16. 16

    H.Kaneko, M.Hasunuma, A.Sawabe, T.Kawanoue, Y.Kohanawa, S.Komatsu and M.Miyauchi, Proc 28th Ann.Int’l. Reliab.Phys.Symp., IEEE, 194(1985)

    Google Scholar 

  17. 17

    M.Hasunuma, H.Kaneko, A.Sawabe, T.Kawanoue, Y.Kohanawa, S.Komatsu and M.Miyauchi, IEDM Tech.Dig., IEEE, 677(1989)

    Google Scholar 

  18. 18

    K.Hinode, N.Owada, T.Nishida and K.Mukai, J.Vac.Sci.Technol., B5, 518(1987)

    Article  Google Scholar 

  19. 19

    A. Gangulee and F. M. d’Heurle, Thin Solid Films, 16, 227(1973)

    CAS  Article  Google Scholar 

  20. 20

    T.Kobayashi, A.Sekiguchi, N.Akiyama, N.Hosokawa and T.Asamaki, J.Vac.Sci.Technol., A 10, 525(1992)

    CAS  Article  Google Scholar 

  21. 21

    I.Yamada, H.Inokawa and T.Takagi, J.Appl.Phys., 56, 2746 (1984)

    CAS  Article  Google Scholar 

  22. 22

    F. d’Heurle, L. Berenbaum and R. Rosenberg, Tran. of AIME, 242, 502 (1968)

    Google Scholar 

  23. 23

    H.Kaneko, T.Kawanoue, M.Hasunuma and M.Miyauchi, AIP Conf. Proc. No.305 (edited by P.S.Ho, C.Y.Li and P.Totta), 179 (1994)

  24. 24

    R.Messer, S.Dais and D.Wolf, Proc. 18th Ampere Congress (Nottingham, England), 1974

    Google Scholar 

  25. 25

    R.W.Balluffi, Met. Trans., 13B, 527(1982)

    CAS  Article  Google Scholar 

  26. 26

    D.Wolf, J.Mater.Res., 5, 1708(1990)

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hasunuma, M., Toyoda, H., Kawanoue, T. et al. A Highly Reliable Al Line with Controlled Texture and Grain Boundaries. MRS Online Proceedings Library 391, 335 (1995). https://doi.org/10.1557/PROC-391-335

Download citation