A New Local Electronic Stopping Model for the Monte Carlo Simulation of Arsenic Ion Implantation into (100) Single-Crystal Silicon

Abstract

In this paper is reported the development and implementation of a new local electronic stopping model for arsenic ion implantation into single-crystal silicon. Monte Carlo binary collision (MCBC) models are appropriate for studying channeling effects since it is possible to include the crystal structure in the simulators. One major inadequacy of existing MCBC codes is that the electronic stopping of implanted ions is not accurately and physically accounted for, although it is absolutely necessary for predicting the channeling tails of the profiles. In order to address this need, we have developed a new electronic stopping power model using a directionally dependent electronic density (to account for valence bonding) and an electronic stopping power based on the density functional approach. This new model has been implemented in the MCBC code, UT-MARLOWE The predictions of UT-MARLOWE with this new model are in very good agreement with experimentally-measured secondary ion mass spectroscopy (SIMS) profiles for both on-axis and off-axis arsenic implants in the energy range of 15-180 keV.

This is a preview of subscription content, access via your institution.

References

  1. 1

    M. Posselt. Conf. Computer Simulation Rad. Eff. Sol. Tech. Pgm. with abstracts, 125, July, (1994).

  2. 2

    J. Lindhard and M. Scharf, Phys., Rev., 124, 128, (1961).

    CAS  Article  Google Scholar 

  3. 3

    O. B. Firsov, Sov. Phys. JETP, 36, 1076, (1959).

    Google Scholar 

  4. 4

    B. Blanchard et al., Mat. Res., 6, 1283, (1971).

    CAS  Google Scholar 

  5. 5

    S. Furukawa and H. Ishiwara, J. Appl. Phys., 43, 295, (1972).

    Article  Google Scholar 

  6. 6

    R. G. Wilson, J. Appl. Phys., 54, 6879, (1983).

    CAS  Article  Google Scholar 

  7. 7

    K. Klein et al., Electrochem. Soc. Spring Mtg., Extended Abstracts, 357, (1990).

  8. 8

    S.-H. Yang, S. Morris, D. Lim, and A. Tasch, J. Electronic Mat., 23, 801, (1994).

    CAS  Article  Google Scholar 

  9. 9

    N. Azziz, K. Brannon, and G. Srinivasan, Mat. Res. Soc. Proc, 45, 71, (1985).

    CAS  Article  Google Scholar 

  10. 10

    K. Klein, C. Park, and A. Tasch, Appl. Phys. Lett., 57, 2701, (1990).

    CAS  Article  Google Scholar 

  11. 11

    G. Hobler et al., COMPEL, 10, 323, (1991).

    Article  Google Scholar 

  12. 12

    W. Brandt, Nucl. Inst. Meth., 194, 13, (1981).

    Article  Google Scholar 

  13. 13

    P. M. Echenique, R. M. Nieminen, and R. H. Ritchie, Solid State Comm., 37, 779, (1981).

    CAS  Article  Google Scholar 

  14. 14

    J. A. Golovchenko, D. E. Cox, A. N. Goland, Phys. Rev. B, 26, 2335, (1982).

    CAS  Article  Google Scholar 

  15. 15

    J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, vol. 1, (Pergamon, New York, 1985)

    Google Scholar 

  16. 16

    K. Klein, C. Park, and A. Tasch, IEEE Trans. Electron Dev., 39, 1614, (1992).

    CAS  Article  Google Scholar 

  17. 17

    N. Barberan and P. M. Echenique, J. Phys. B, 19, L81, (1986).

    CAS  Article  Google Scholar 

  18. 18

    P. M. Echenique and M. E. Uranga, Interaction of Charged Particles with Solids and Surfaces, NATO SERIES, 271, 39, (Plenum, 1991).

    CAS  Article  Google Scholar 

  19. 19

    P. M. Echenique, R. M. Nieminen, J. C. Ashley, and R. H. Ritchie, Phys, Rev. A, 33, 397, (1986).

    Article  Google Scholar 

  20. 20

    R. Wolfe, M. Needels, T. Arias and J. Joannopoulos, IEEE Computer Graphics & Applications, 45, (1992).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. H. Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, S.H., Morris, S., Tian, S. et al. A New Local Electronic Stopping Model for the Monte Carlo Simulation of Arsenic Ion Implantation into (100) Single-Crystal Silicon. MRS Online Proceedings Library 389, 77–82 (1995). https://doi.org/10.1557/PROC-389-77

Download citation