Fundamental Mechanisms for Hg Vacancy and Interstitial Modeling in Mercury Cadmium Telluride

Abstract

Due to the large concentration of electrically active defects in Hg1-xCdxTe, it is important to properly account for them when designing fabrication processes for infrared focal plane arrays (IRFPAs). Stanford University’s Mercury Cadmium Telluride Process Simulator, SUMerCad, is being developed to simulate the interaction of native defects and dopants in Hg0.8Cd0.2Te in order to accurately model various processing techniques. Non-linear coupled differential equations are used to model the physics of the diffusion mechanisms, rather than extrapolating the diffusion profiles from experimental data. The fundamental constants for the point defects were obtained by exercising the simulator over the various parameter spaces and comparing the results to experimental work and best principle calculations. The methodologies used, point defect mechanisms modeled, and parameters determined are discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1

    M.A. Berding, M. van Schilfgaarde, and A. Sher, presented at the 1994 U.S. Workshop on the Phys. and Chem. of MCT and Other IR Materials, San Antonio, TX, 1994 (in press: J. Electron. Mater.)

  2. 2

    C.R. Helms, J.L. Melendez, H.G. Robinson, S. Holander, J. Hasan, and S. Halepete, presented at the 1994 U.S. Workshop on the Phys. and Chem. of MCT and Other IR Materials, San Antonio, TX, 1994 (in press: J. Electron. Mater.)

  3. 3

    J.L. Melendez and C.R. Helms, presented at the 1993 U.S. Workshop on the Phys. and Chem. of MCT and Other IR Materials, Seattle, WA, 1993 (in press: J. Electron. Mater.)

  4. 4

    J.L. Melendez and C.R. Helms, J. Electron. Mater., 22 (8), 999 (1993).

    CAS  Article  Google Scholar 

  5. 5

    J.L. Melendez, PhD Thesis, Stanford University, 1993.

  6. 6

    H.F. Schaake, J. Electron. Mater., 14 (5), 513 (1985).

    CAS  Article  Google Scholar 

  7. 7

    H.R. Vydyanath, J. Electrochem. Soc., 128 (12), 2609 (1981).

    CAS  Article  Google Scholar 

  8. 8

    M. Brown and A.F.W. Willoughby, J. Cryst. Growth, 59, 27 (1982).

    CAS  Article  Google Scholar 

  9. 9

    N.A. Archer, H.D. Palfrey, and A.F.W. Willoughby, J. Cryst. Growth, 117 (2), 177 (1992).

    CAS  Article  Google Scholar 

  10. 10

    N.A. Archer and H.D. Palfrey, J. Electron. Mater. 20 (6), 419 (1991).

    CAS  Article  Google Scholar 

  11. 11

    C.L. Jones, M.J.T. Quelch, P. Capper, and J.J. Gosney, J. Appl. Phys., 53 (12), 9080 (1982).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. L. Holander.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holander, S.L., Robinson, H.G. & Helms, C.R. Fundamental Mechanisms for Hg Vacancy and Interstitial Modeling in Mercury Cadmium Telluride. MRS Online Proceedings Library 389, 47–52 (1995). https://doi.org/10.1557/PROC-389-47

Download citation