Properties of Point-Defects in Si for Process Modeling

Abstract

The development of future Si device technologies will rely extensively on modeling, requiring truly predictive tools. Here we focus on the front-end processes, during which ion-implantation and annealing create 3-D impurity profiles that determine crucial electrical device parameters. The final configuration is the result of a complex interaction of dopant atoms with Si self-interstitials and vacancies, which themselves interact with each other as well as with the implantation-induced damage and interfaces. Predictive modeling requires for all these processes a solid understanding of the physical phenomena as well as accurate quantitative information. Si self-interstitials and vacancies are not observable directly in an experiment, but only via their interactions with some other physical quantity of the sample. We review our work employing dopant atoms in δ-doping superlattices (δ-DSL) that yield directly the time averaged depth profiles of Si native point defects during a particular processing sequence. This approach is uniquely suited for giving insights into the interplay of point defects in Si, providing crosschecks for atomistic calculations as well as parameters for process simulators. We describe experiments to extract interstitial and vacancy parameters and discuss the influence of intrinsic and extrinsic interstitial traps, as well as of the annealing environment, on the native point defect population. The latter allows to place certain bounds on the interstitial vacancy recombination coefficient as well as the ratio of interstitial and vacancy equilibrium concentrations.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Semiconductor Industry Association, The National Technology Roadmap for Semiconductors (SIA, San Jose, 1995).

    Google Scholar 

  2. 2

    K. Cho, M. Numan, T. G. Finstad, W. K. Chu, J. Liu, and J. J. Wortman, Appl. Phys. Lett. 47, 1321 (1985).

    CAS  Article  Google Scholar 

  3. 3

    R. Angelucci, P. Negrini, and S. Solmi, Appl. Phys. Lett., 49, 1468 (1986).

    CAS  Article  Google Scholar 

  4. 4

    A. E. Michel, W. Rausch, P. A. Ronsheim, and R. H. Kastl, Appl. Phys. Lett. 50, 416 (1987).

    CAS  Article  Google Scholar 

  5. 5

    A. Seeger and K. P. Chik, phys. stat. sol. 29, 455 (1968).

    CAS  Article  Google Scholar 

  6. 6

    P. M. Fahey, P. B. Griffin, and J. D. Plummer, Rev. Mod. Phys. 61, 289 (1989).

    CAS  Article  Google Scholar 

  7. 7

    D. J. Eaglesham, P. A. Stolk, H.-J. Gossmann, and J. M. Poate, Appl. Phys. Lett. 65, 2305 (1994).

    CAS  Article  Google Scholar 

  8. 8

    M. D. Giles, J. Electrochem. Soc. 138, 1160 (1991).

    CAS  Article  Google Scholar 

  9. 9

    H.-J. Gossmann, C. S. Rafferty, H. S. Luftman, F. C. Unterwald, T. Boone, and J. M. Poate, Appl. Phys. Lett. 63, 639 (1993).

    CAS  Article  Google Scholar 

  10. 10

    H.-J. Gossmann, G. H. Gilmer, C. S. Rafferty, F. C. Unterwald, T. Boone, J. M. Poate, H. S. Luftman, and W. Frank, J. Appl. Phys 77, 1948 (1995).

    CAS  Article  Google Scholar 

  11. 11

    P. A. Stolk, H.-J. Gossmann, D. J. Eaglesham, D. C. Jacobson, H. S. Luftman, J. M. Poate, Proc. Mat. Res. Soc., to be published.

  12. 12

    H. Bracht, N. A. Stolwijk, and H. Mehrer, 7th Int. Symp. on Silicon Mater. Science and Technol., San Francisco, May 22–27, 1994

  13. 13

    F. F. Morehead, Mat. Res. Symp. Soc. Proc. 104, 99 (1988).

    CAS  Article  Google Scholar 

  14. 14

    G. H. Gilmer, T. Diaz de la Rubia, D. M. Stock, and M. Jaraiz, Nucl. Instrum. Meth. Phys. Res. B, to be published.

  15. 15

    H.-J. Gossmann and E. F. Schubert, Critical Reviews in Solid State and Material Science, 18, 1 (1993).

    CAS  Article  Google Scholar 

  16. 16

    S. M. Hu, J. Appl. Phys. 45, 1567 (1974).

    CAS  Article  Google Scholar 

  17. 17

    P. B. Griffin, Ph.-D. Thesis, Stanford University, 1989; SRC Technical Report T90091;

  18. 18

    P. B. Griffin, S. T. Ahn, W. A. Tiller, and J. D. Plummer, Appl. Phys. Lett. 51, 115 (1987).

    CAS  Article  Google Scholar 

  19. 19

    M. E. Law, IEEE Trans. Comp. Aided Design 10, 1125 (1991).

    Article  Google Scholar 

  20. 20

    N. E. B. Cowern, Appl. Phys. Lett. 54, 1415 (1989).

    CAS  Article  Google Scholar 

  21. 21

    N. E. B. Cowern, Appl. Phys. Lett. 64, 2646 (1994).

    CAS  Article  Google Scholar 

  22. 22

    H. Zimmermann and H. Ryssel, Appl. Phys. A 55, 121 (1992).

    Article  Google Scholar 

  23. 23

    H.-J. Gossmann, P. Asoka-Kumar, T. C. Leung, B. Nielsen, K. G. Lynn, F. C. Unterwald, and L. C. Feldman, Appl. Phys. Lett. 61, 540 (1992).

    CAS  Article  Google Scholar 

  24. 24

    P. Asoka-Kumar, H.-J. Gossmann, F. C. Unterwald, L. C. Feldman, T. C. Leung, H. L. Au, V. Talyanski, B. Nielsen, and K. G. Lynn, Phys. Rev. B 48, 5345 (1993).

    Article  Google Scholar 

  25. 25

    M. Koiwa, Acta Metallurg. 22, 1259 (1974).

    CAS  Article  Google Scholar 

  26. 26

    P. A. Stolk, D. J. Eaglesham, H.-J. Gossmann, and J. M. Poate, Appl. Phys. Lett. 66, 1370 (1995).

    CAS  Article  Google Scholar 

  27. 27

    D. R. Lim, C. S. Rafferty, C. A. King, H.-J. Gossmann, H. S. Luftman, R. C. Kister, to be published.

  28. 28

    C. S. Rafferty, private communication

  29. 29

    H.-H. Vuong, H.-J. Gossmann, C. S. Rafferty, H. S. Luftman, F. C. Unterwald, D. C. Jacobson, R. E. Ahrens, T. Boone, and P. M. Zeitzoff, J. Appl. Phys., in print

  30. 30

    T. K. Mogi, H.-J. Gossmann, D. J. Eaglesham, C. S. Rafferty, H. S. Luftman, F. C. Unterwald, T. Boone, J. M. Poate, and M. O. Thompson, J. Electrochem. Soc., to be published.

  31. 31

    B. Herner, K. S. Jones, and H.-J. Gossmann, to be published.

  32. 32

    T. Y. Tan and U. Gösele, Appl. Phys. A 37, 1 (1985).

    Article  Google Scholar 

  33. 33

    H. Park and M. E. Law, J. Appl. Phys. 72, 3431.

  34. 34

    H.-J. Gossmann, C. S. Rafferty, F. C. Unterwald, and T. Boone T. K. Mogi, M. O. Thompson, and H. S. Luftman, Appl. Phys. Lett., to be published.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. J. Gossmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gossmann, H.J., Rafferty, C.S., Stolk, P.A. et al. Properties of Point-Defects in Si for Process Modeling. MRS Online Proceedings Library 389, 3–14 (1995). https://doi.org/10.1557/PROC-389-3

Download citation