Simulation of Uniformity and Lifetime Effects in Collimated Sputtering

Abstract

Collimated sputtering has been successful in providing good contact barriers for sub-half micron contacts with aspect ratios of 3 and greater. This approach does present drawbacks however, particularly in terms of reduced deposition rates and degraded film uniformity. The flux collected on the collimator leads to closing off of the cells, further reducing deposition rate on the wafer and limiting the life of the collimator. This paper demonstrates simulation of the filling of the collimator with different system configurations and pressures using the SIMSPUD vapor transport and SIMBAD thin film growth simulators. The model can determine collimator filling uniformity, blanket film uniformity, angular distribution of collimated sputter flux, and lifetime of the collimator. Given the target erosion profile, system geometry, and deposition rate, collimator lifetime can be predicted. The model indicates that for a 300 mm diameter source a drop in operating pressure from 0.67 Pa to 0.27 Pa has little effect on collimator life in terms of kWh, while increasing collimator life in terms of wafers by about 50%. The increase in the number of wafers processed comes at the expense of a small loss of uniformity.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1

    L. Ouellet, R. Reynolds, Y-K. Kim, presented at Semicon Korea, 1992 (unpublished).

  2. 2

    M.F. Chisholm, G.A. Dixit, M.K. Jain, R.H. Havemann, and T. Weaver, in Proc. 1994 VLSI Multilevel Interconnection Conf. (June 7–8), pp. 22–28.

  3. 3

    S.M. Rossnagel, D. Mikalsen, H. Kinoshita, and J.J. Cuomo, J. Vac. Sci. Technol., A9, 261, (1991).

    Article  Google Scholar 

  4. 4

    A. Ohsaki, K. Maekawa, M. Fujisawa, Y. Itoh, M. Fujinaga, H. Kotani, in Proc. Second Int. Symp. on Sputtering and Plasma Processes, Tokyo, Japan, May 27–28, 1993

  5. 5

    S.K. Dew, J. Appl. Phys., 76, 4857, ( 1994).

    Article  Google Scholar 

  6. 6

    Z. Lin and T.S. Cale, in Proc. 1994 VLSI Multilevel Interconnection Conf. (June 7–8), p. 552.

  7. 7

    B. Vollmer, T. Licata, D. Restaino, and J. Ryan, Thin Solid Films, 247, 104, (1994).

    CAS  Article  Google Scholar 

  8. 8

    C.F. Hoener, E. Pylant, E.G. Boden, S.-Q. Wang, J. Vac. Sci. Technol., B12, 1394, (1994).

    Article  Google Scholar 

  9. 9

    D.S. Bang, J.P. McVittie, M.M. Islamraja, K.C. Saraswat, Z. Krivokapic, S. Ramaswami, and R. Cheung, in 10th Symp. on Plasma Processing, Elec. Chem. Soc., San Francisco, May 1994, p. 401.

  10. 10

    D.S. Bang, J.P. McVittie, M.M. Islamraja, K.C. Saraswat, Z. Krivokapic, S. Ramaswami, and R. Cheung, in Proc. 1994 VLSI Multilevel Interconnection Conf. (June 7–8), p. 554.

  11. 11

    T. Smy, K.L. Westra, and M.J. Brett, IEEE Trans. Elec. Devices, ED-37, 591, (1990).

    Article  Google Scholar 

  12. 12

    S. Dew, T. Smy, and M. Brett, Jpn. J. Appl. Phys., 33, 1140, (1994).

    CAS  Article  Google Scholar 

  13. 13

    S.K. Dew, D. Liu, M.J. Brett, and T. Smy, J. Vac. Sci. Technol., B11, 1281, (1993).

    Article  Google Scholar 

  14. 14

    D. Liu, T. Janacek, S.K. Dew, M.J. Brett, T. Smy, and W. Tsai, Thin Solid Films, 236, 267, (1993).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. N. Tait.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tait, R.N., Dew, S.K., Tsai, W. et al. Simulation of Uniformity and Lifetime Effects in Collimated Sputtering. MRS Online Proceedings Library 389, 373–378 (1995). https://doi.org/10.1557/PROC-389-373

Download citation