In-Situ Resistance Measurements During Rapid Thermal Annealing for Process Characterization


Measurement of resistance in-situ during rapid thermal annealing is a powerful technique for process characterization and optimization. A major advantage of in-situ resistance measurements is the very rapid process learning. With silicides, in-situ resistance measurements can quickly determine an appropriate thermal process in which a low resistance silicide phase is formed without the agglomeration or inversion of silicide/polycrystalline silicon structures. One example is an optimized two step anneal for CoSi2 formation which was developed in less than one clay. Examples of process characterization include determining the phase formation kinetics of TiSi2 (C49 and C54), Co2Si, and CoSi2 using in-situ ramped resistance measurements. The stability of TiSi2 or CoSi2/poly-Si structures has also been characterized by isothermal measurements. Resistance measurements have been made at heating rates from 1 to 100°C/s and temperatures up to 1000°C. The sample temperature was calibrated by melting Ag, Al, or Au/Si eutectics.

This is a preview of subscription content, access via your institution.


  1. 1

    J.M.E. Harper. L.A. Clevenger, E.G. Colgan, C. Cabral, Jr, and B. Arcot, Mat. Res. Soc. Symp. Proc. Vol. 318, 307 (1994).

    CAS  Article  Google Scholar 

  2. 2

    E.J. Mittemeijer, A. Van Gent, and P.J. Van der Schaaf, Metall. Trans. A, 17A, 1441 (1986).

    CAS  Article  Google Scholar 

  3. 3

    E.J. Mittemeijer, L. Cheng, P.J. van der Schaaf, C.M. Brakman, and B.M. Korevaar, Metall. Trans. A, 19A, 925 (1988).

    CAS  Article  Google Scholar 

  4. 4

    E.G. Colgan, C. Cabral, Jr., and D.E. Kotecki, J. Appl. Phys. 77(2), 614 (1995).

    CAS  Article  Google Scholar 

  5. 5

    E.G. Colgan, L.A. Clevenger, and C. Cabral, Jr., Appl. Phys. Lett. 65(16), 2009 (1994).

    CAS  Article  Google Scholar 

  6. 6

    X.-H. Li, J.R.A. Carlsson, S.F. Gong, and H.T.G. Hentzell, J. Appl. Phys. 72(2), 514 (1992).

    CAS  Article  Google Scholar 

  7. 7

    R.D. Thompson, H. Takai, P.A. Psaras, and K.N. Tu, J. Appl. Phys. 61(2), 540 (1987).

    CAS  Article  Google Scholar 

  8. 8

    L.A. Clevenger, J.M.E. Harper, C. Cabral Jr., C. Nobili, G. Ottaviani, and R. Mann, J. Appl. Phys. 72(10), 4978 (1992).

    CAS  Article  Google Scholar 

  9. 9

    Y. Matsubara, T. Horiuchi, and K. Okumura, Appl. Phys. Lett. 62(21), 2634 (1993).

    CAS  Article  Google Scholar 

  10. 10

    R.W. Mann and L.A. Clevenger, J. Electrochem. Soc. 141(5), 1347 (1994).

    CAS  Article  Google Scholar 

  11. 11

    S.S. Lau, J.W. Mayer, and K.N. Tu, J. Appl. Phys. 49(7), 4005 (1978).

    CAS  Article  Google Scholar 

  12. 12

    C-D. Lien, M-A. Nicolet, C.S. Pai, and S.S. Lan, Appl. Phys. A 36, 153 (1985).

    Article  Google Scholar 

  13. 13

    B.S. Lim, E. Ma, M-A. Nicolet, and M. Natan, J. Appl. Phys. 61(11), 5027 (1987).

    CAS  Article  Google Scholar 

  14. 14

    H. Miura, E. Ma, and C.V. Thompson, J. Appl. Phys. 70(8), 4287 (1991).

    CAS  Article  Google Scholar 

  15. 15

    C-D. Lien, M-A. Nicolet, and S.S. Lan, Appl. Phys. A 34, 249 (1984).

    Article  Google Scholar 

  16. 16

    A. Appelbaum, R.V. Knoell, and S.P. Murarka, J. Appl. Phys 57(6), 1880 (1985).

    CAS  Article  Google Scholar 

  17. 17

    F.M. D’Heurle and C.S. Petersson, Thin Solid Films 128, 283 (1985).

    Article  Google Scholar 

  18. 18

    L. Van den hove, R. Wolters, K. Maex, R. De Keershaecker, and G. Declerck, J. Vac. Sci. Technol. B 4(6), 1358 (1986).

    Article  Google Scholar 

  19. 19

    P. Revesz, L.R. Zheng, L.S. Hung, and J.W. Mayer, Appl. Phys. Lett. 48(23), 1591 (1986).

    CAS  Article  Google Scholar 

  20. 20

    Q.Z. Hong, S.Q. Hong, FM. D’Heurle, and J.M.E. Harper, Thin Solid Films, 253(1–2), 479(1994).

    CAS  Article  Google Scholar 

  21. 21

    H. Jiang, C.M. Osburn, Z.G. Xiao, G. McGuire, and G.A. Rozgonyi, J. Electrochem. Soc. 139(1), 211 (1992).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to E. G. Colgan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Colgan, E.G., Cabral, C., Clevenger, L.A. et al. In-Situ Resistance Measurements During Rapid Thermal Annealing for Process Characterization. MRS Online Proceedings Library 389, 321–326 (1995).

Download citation