A New Flexible Rapid Thermal Processing System

Abstract

A highly flexible Rapid Thermal Multiprocessing (RTM) reactor is described. This flexibility is the result of several new innovations: a lamp system, an acoustic thermometer and a real-time control system. The new lamp has been optimally designed through the use of a “virtual reactor” methodology to obtain the best possible wafer temperature uniformity. It consists of multiple concentric rings composed of light bulbs with horizontal filaments. Each ring is independently and dynamically controlled providing better control over the spatial and temporal optical flux profile resulting in excellent temperature uniformity over a wide range of process conditions. An acoustic thermometer non-invasively allows complete wafer temperature tomography under all process conditions - a critically important measurement never obtained before. For real-time equipment and process control a model based multivariable control system has been developed. Extensive integration of computers and related technology for specification, communication, execution, monitoring, control, and diagnosis demonstrates the programmability of the RTM.

This is a preview of subscription content, access via your institution.

References

  1. 1

    P. P. Apte and K. C. Saraswat, “ IEEE Trans. Semiconductor Manufacturing, Vol 5, No. 3, pp. 180–188, August 1992.

    Article  Google Scholar 

  2. 2

    K. C. Saraswat et al., IEEE Trans. Semicond. Manufac., vol.7, No. 2, May 1994, p195.

    Article  Google Scholar 

  3. 3

    H. A. Lord, IEEE Trans. Semicond. Manufac., vol. 1, 1988, p105.

    Article  Google Scholar 

  4. 4

    S. Norman, IEEE Trans. on Electron Dev., Vol. 39, pp. 205–207, 1992.

    Article  Google Scholar 

  5. 5

    C. Schaper, M. Moslehi, K. Saraswat, T. Kailath, IEEE Trans. Semi. Manuf., 1994 Vol 7, No. 2, May 1994, pp. 202–219.

    Article  Google Scholar 

  6. 6

    C. Schaper, M. M. Moslehi, K. C. Saraswat and T. Kailath, J. Electrochem. Soc., Vol. 141, No. 11, November 1994, pp. 3200–3209.

    CAS  Article  Google Scholar 

  7. 7

    S. A. Campbell, K. H. Ahn, K. L. Knutson, J. D. Leighton and B. Y. Liu, IEEE Trans. Semicond. Manufac., vol. 4, 1991, p14.

    Article  Google Scholar 

  8. 8

    K. L. Knutson, S. A. Campbell and F. Dunn, IEEE Trans. Semicond. Manufac, vol 7, No. 1 1994, p68.

    Article  Google Scholar 

  9. 9

    R. L. Cook, K. E. Torrance, ACM Trans. Graphics, vol. 1, No. 1, Jan. 1982, p7

    Article  Google Scholar 

  10. 10

    Y. J. Lee, F. L. Degertekin, J. Pei. B.T. Khuri-Yakub and K.C. Saraswat, IEEE Int. Electron Dev. Meet. Washington, D.C., Dec. 6–8, 1993.

  11. 11

    F. L. Degertekin, J. Pei, B.T. Khuri-Yakub And K.C. Saraswat, Applied Physics Letters, Vol. 64(11), 14 March 1994, pp. 1338–1340.

    CAS  Article  Google Scholar 

  12. 12

    P. Dankoski, P. Gyugyi, and G. F. Franklin, Mater. Res. Soc. Proc: Rapid Thermal and Integrated Processing , San Francisco, April, 1993.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. C. Saraswat.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saraswat, K.C., Chen, Y., Degertekin, L. et al. A New Flexible Rapid Thermal Processing System. MRS Online Proceedings Library 389, 307–319 (1995). https://doi.org/10.1557/PROC-389-307

Download citation