Residual Stress, Mechanical Behavior and Electrical Properties of Cu/Nb Thin-Film Multilayers

Abstract

The effect of compositional wavelength on the residual stress, electrical resistivities and mechanical properties of Cu/Nb thin-film multilayers sputtered onto single-crystal Si substrates was evaluated. Electrical resistivities were measured down to 4 °K using a standard four-point probe measurement system. A differential specimen-curvature technique was used to detennine residual stress, and a mechanical-properties microprobe was employed to obtain hardness and elastic modulus. Characterization techniques included profilometry, Ion-Beam Analysis (IBA) and Transmission Electron Microscopy (TEM). The hardness of the Cu-Nb multilayers increased with decreasing compositional wavelength so that the layered structures had hardness values in excess of either of the constituents and the hardness predicted by the rule of mixtures. A peak in the net residual compressive stress of the multilayers was observed at a compositional wavelength of 100 nm. No resistivity plateau was observed within the composition wavelength range studied.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. D. Verhoeven, H. L. Downing, L. S. Chumbley and E. D. Gibson, J. Appl. Phys., 65, 1293 (1989).

    CAS  Article  Google Scholar 

  2. 2.

    K. T. Chiang, K. J. Kallenborn, J. L. Yuen and N. E. Paton, Mater. Sci. and Eng., A156, 85 (1992).

    Article  Google Scholar 

  3. 3.

    P. Liu, S. Bahadur and J. D. Verhoeven, Wear, 166, 133 (1993).

    CAS  Article  Google Scholar 

  4. 4.

    S. Foner, E. J. McNiff, Jr., B. B. Schwartz and R. Roberge, Appl. Phys. Lett., 31, 853 (1977).

    CAS  Article  Google Scholar 

  5. 5.

    J. P. Harbison and J. Bevk, J. Appl. Phys., 48, 5180 (1977).

    CAS  Article  Google Scholar 

  6. 6.

    P. D. Krotz, J. A. Flint, J. L. Yuen and N. E. Paton, Mater. Sci. and Eng., A149, 225 (1992).

    CAS  Article  Google Scholar 

  7. 7.

    J. S. Koehler, Phys. Rev. B, 2, 547 (1970).

    Article  Google Scholar 

  8. 8.

    S. L. Lehoczky, J. Appl. Phys., 49, 5479 (1978).

    CAS  Article  Google Scholar 

  9. 9.

    G. Zheng, Y. Kitaoka, Y. Oda, Y. Kohori, K. Asayama, Y. Obi, H. Fujimori and R. Aoki, Physica B, 165&166 481 (1990).

    Google Scholar 

  10. 10.

    X. Zhang, H. Xia and A. Hu, Phys. Stat. Sol. B, 155, 137 (1989).

    CAS  Article  Google Scholar 

  11. 11.

    Handbook of Modern Ion Beam Analysis, edited by J. R. Tesmer and M. Nastasi, (MRS, Pittsburgh, in press).

  12. 12.

    W. D. Nix, Met. Trans., 20A, 2217 (1989).

    CAS  Article  Google Scholar 

  13. 13.

    C. A. Volkert, J. Appl. Phys., 70, 3521 (1991).

    CAS  Article  Google Scholar 

  14. 14.

    G. G. Stoney, Proc. Roy. Soc. (London), A82, 172 (1909).

    Google Scholar 

  15. 15.

    L. R. Doolittle, Ph.D. Thesis (Cornell University, Ithaca, New York, 1987).

  16. 16.

    H. Windischmann, J. Vac. Sci. Technol., A9, 2431 (1991).

    Article  Google Scholar 

  17. 17.

    S. P. Baker and W. D. Nix, J. Mater. Res., 9, 3145 (1994).

    CAS  Article  Google Scholar 

  18. 18.

    R. Skomski, M. Enrech and J. M. D. Coey, Nanostruct. Mater., 1, 337 (1992).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. J. Griffin JR..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Griffin, A.J., Embury, J.D., Hundley, M.F. et al. Residual Stress, Mechanical Behavior and Electrical Properties of Cu/Nb Thin-Film Multilayers. MRS Online Proceedings Library 382, 309 (1995). https://doi.org/10.1557/PROC-382-309

Download citation