A Semi-Insulating Layer for Novel High Voltage Polysilicon Thin Film Transistors

Abstract

This work describes the deposition and characterisation of semi-insulating oxygen-doped silicon films for the development of high voltage polycrystalline silicon (poly-Si) circuitry on glass. The performance of a novel poly-Si High Voltage Thin Film Transistor (HVTFT) structure, incorporating a layer of semi-insulating material, has been investigated using a two dimensional device simulator. The semi-insulating layer increases the operating voltage of the HVTFT structure by linearising the potential distribution in the device offset region.

A glass compatible semi-insulating layer, suitable for HVTFT applications, has been deposited by the Plasma Enhanced Chemical Vapour Deposition (PECVD) technique from silane (SiH4), nitrous oxide (N2O) and helium (He) gas mixtures. The as-deposited films are furnace annealed at 600°C which is the maximum process temperature. By varying the N2O/SiH4 ratio the conductivity of the annealed films can be accurately controlled up to a maximum of around 10−7 Ω−1.cm−1 Helium dilution of the reactant gases improves both film uniformity and reproducibility. Raman analysis shows the as-deposited and annealed films to be completely amorphous. A model for the microstructure of these Semi-Insulating Amorphous Oxygen-Doped Silicon (SIAOS) films is proposed to explain the observed physical and electrical properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Bruesch, T. Stockmeier, F. Stucki and P.A. Buffat, J. Appl. Phys. 73, 7677 (1993).

    Article  Google Scholar 

  2. 2.

    D. Jaume, G. Charitat and P. Rössel, IEEE Trans. Elec. Devices ED-38, 1681 (1991).

    Article  Google Scholar 

  3. 3.

    T-Y. Huang, I.W. Wu, A.G. Lewis and R.H. Bruce, IEEE Elec. Dev. Letts. 11, 244 (1990).

    CAS  Article  Google Scholar 

  4. 4.

    Y. Uemoto, E. Fujii, F. Emoto and K. Senda, IEEE Trans. Elec. Devices ED-38, 95 (1991).

    Article  Google Scholar 

  5. 5.

    K. Tanaka, K. Nakazawa and K. Kata, IEEE Trans. Elec. Devices ED-39, 916 (1992).

    Article  Google Scholar 

  6. 6.

    K.M. Johnson and G. Moddel, Applied Optics 28, 4888 (1989).

    CAS  Article  Google Scholar 

  7. 7.

    E.M. Sankara Narayanan, F.J. Clough and W.I. Milne, ISEM, Seoul, Korea, June (1994).

  8. 8.

    S. Lombardo, S.U. Campisano and F. Baroetto, Phys. Rev. B 47, 13561 (1993).

    CAS  Article  Google Scholar 

  9. 9.

    S. Lombardo, S.U. Campisano and F. Baroetto, Appl. Phys. Letts. 63, 470 (1993).

    CAS  Article  Google Scholar 

  10. 10.

    P.J. England and J.G. Simmons, Solid State Electronics 32, 131 (1989).

    CAS  Article  Google Scholar 

  11. 11.

    J. Batey and E. Tierney, J. Appl. Phys. 60, 3136 (1986).

    CAS  Article  Google Scholar 

  12. 12.

    TMA-MEDICIV 2.0 and Trapped Charge AAM, Technology Modelling Associates Inc., Palo Alto, USA.

  13. 13.

    Technology Modelling Associates Inc., Palo Alto, USA (private communication).

  14. 14.

    N.F. Mott, Phil. Mag. 19, 835 (1969).

    CAS  Article  Google Scholar 

  15. 15.

    G. Lucovsky, J. Yang, S.S. Chao and W. Czubaty, Phys. Rev. B 28, 3225 (1983).

    CAS  Article  Google Scholar 

  16. 16.

    D.J. Olego and H. Baumgart, J. Appl. Phys. 63, 2669 (1988).

    CAS  Article  Google Scholar 

  17. 17.

    M. Hamasaki, T. Adachi and M. Kikuchi, J. Appl. Phys. 49, 3987 (1978).

    CAS  Article  Google Scholar 

  18. 18.

    J. Ni and E. Arnold, Appl. Phys. Letts. 39, 554 (1981).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. J. Clough.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clough, F.J., Chen, Y., Brown, A.O. et al. A Semi-Insulating Layer for Novel High Voltage Polysilicon Thin Film Transistors. MRS Online Proceedings Library 377, 731–736 (1995). https://doi.org/10.1557/PROC-377-731

Download citation