Amorphous-to-Microcrystalline Silicon Transition in Hot-Wire Chemical Vapor Deposition


The conductivity and the structural properties of thin films deposited by Hot-Wire Chemical Vapor Deposition (HW-CVD) from silane and hydrogen at a substrate temperature of 220 °C are shown to be strongly dependent on the filament temperature, Tfil, and process pressure, p. Amorphous silicon films are obtained at low pressures, p < 3 × 10−2 Torr, for Tfil ∼ 1900 °C and FH2 = FSiH4. At this TfilJU, high deposition rates are observed, both with and without hydrogen dilution, and no silicon was deposited on the filaments. At Tfil ∼ 1500 °C, a transition from a-Si:H for p > 0.3 Torr to microcrystalline silicon (μc-Si:H) for p < 0.1 Torr occurs. In this temperature regime, silicon growth on the filaments is observed. /ic-Si:H growth both without hydrogen dilution and also in very thin films (∼ 0.05 μm) is achieved. Raman and X-Ray spectra give typical grain sizes of 10 – 20 nm, with a crystalline fraction higher than 50%. For both, Tju ∼ 1500 °C, p > 0.3 Torr and Tfil ∼ 1900 °C and p ∼ 2.7 × 10−2 Torr, an increase of the crystalline fraction from 0 to ∼ 30% is observed when the hydrogen dilution, FH2/FSiH4, increases from 1 to > 4.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. Konuma, H. Curtins, F. A. Sarott and S. Vepřek, Philos. Mag. B, 55 (3), 377 (1987).

    CAS  Article  Google Scholar 

  2. 2.

    S. Komuro, Y. Aoyagi, Y. Segawa, S. Namba A. Masuyamam, A. Matsuda and K. Tanaka, J. Appl. Phys., 56, 1658 (1984).

    CAS  Article  Google Scholar 

  3. 3.

    Y. He, C. Yin, G. Cheng, L. Wang, X. Liu and G. Y. Hu, J. Appl. Phys., 75, 797 (1994).

    CAS  Article  Google Scholar 

  4. 4.

    R. O. Dusane, S. R. Dusane, V. G. Bhide and S. T. Kshirsagas, Appl. Phys. Lett. 63 (16), 2201 (1993).

    Article  Google Scholar 

  5. 5.

    H. Matsumura, Jpn. Appl. Phys. 30, L1522 (1991).

    CAS  Article  Google Scholar 

  6. 6.

    J. Cifre, J. Bertomeu, J. Puigdollers, M. C. Polo, J. Andreu and A. Lloret, Appl. Phys. A59, 645 (1994).

    Article  Google Scholar 

  7. 7.

    J. S. Lannin; Raman Scattering fo Amorphous Si, Ge and their alloys (chapter 6) in Semiconductors and Semimetals 21, Part B, Academic Press, Inc. (1984).

  8. 8.

    T. Kaneko, M. Wakagi, K. Onisawa and T. Minemura, Appl. Phys. Lett. 64 (14), 1865 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    S. Vepřek, F. A. Sarott and Z. Iqbal, Phys. Rev. B 36 (6), 3344 (1987).

    Article  Google Scholar 

  10. 10.

    E. Findeisen, R. Feidenhans’l, M. E. Vigild, K. N. Clausen, J. B. Hansen, M. D. Bentzon and J. P. Goff, J. Appl. Phys. 76 (8), 4636 (1994).

    CAS  Article  Google Scholar 

  11. 11.

    F. S. Borges; Elementos de cristalografía, Edições Gulbenkian (1982).

  12. 12.

    M. Vanacek, J. Kocka, J. Strichlik, Z. Kosicek, O. Stika and A. Triska, Sol. Energy Mater. 8, 411 (1983).

    Article  Google Scholar 

  13. 13.

    N. Wyrsch, F. Finger, T. J. McMahon, M. Vanacek, J. Non-Cryst. Solids, 137 & 138, 347 (1991).

    Article  Google Scholar 

  14. 14.

    N. Wang and S. Wagner, private communication.

  15. 15.

    C. J. Fang, K. J. Gruntz, L. Ley, M. Cardona, F. J. Demond, G. Müller and S. Kalbitzer, J. Non-Cryst. Solids 35 & 36, 255 (1980).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. Brogueira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brogueira, P., Chu, V. & Conde, J.P. Amorphous-to-Microcrystalline Silicon Transition in Hot-Wire Chemical Vapor Deposition. MRS Online Proceedings Library 377, 57–62 (1995).

Download citation