Investigation of the Surface Morphology of a-Si:H by Atomic Force Microscopy and In-Situ Ellipsometry

Abstract

Combining real-time ellipsometry and atomic force microscopy (AFM) the growth of hydrogenated amorphous silicon (a-Si:H), deposited on crystalline silicon wafers with a native oxide layer on top and on fused silica from a dc glow discharge, has been studied from initial nucleation to the final morphology. By in-situ ellipsometry we detected the evolution of morphology changes. The surface structure has been determined by AFM in the nucleation phase and in the subsequent growth stage. During nucleation on crystalline silicon only few (about 40 per 1μm) flat islands of a-Si:H (up to 4 nm high and up to 50 nm in diameter) grow with a strongly enhanced rate compared to bulk deposition. Once the crystalline surface has completely been covered by a-Si:H, the fast deposition of these islands stops and further surface structures, comparable with the initial ones, start to grow gradually until a homogeneous final roughness up to 5nm high is formed. Nucleation of a-Si:H on fused silica yields densely distributed nuclei (up to 1.5 nm high and up to 25 nm in diameter), indicating a shorter surface diffusion length on this substrate compared to the growth on silicon wafers. The ongoing film deposition, however, finally results in a morphology comparable to the one of a-Si:H grown on crystalline silicon. Using hydrogen dilution we found that the final roughness is affected by the dilution ratio; furthermore infrared spectroscopy reveals the surface structure to be correlated with the hydrogen content of the a-Si:H films.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    R.W. Collins and A. Pawlowski, J. Appl. Phys. 59(4), 1160 (1985).

    Article  Google Scholar 

  2. 2.

    R.W. Collins and J.M. Cavese, J. Appl. Phys. 61 (5), 1869 (1987).

    CAS  Article  Google Scholar 

  3. 3.

    B. Drevillon, Thin Solid Films 130, 165 (1985).

    CAS  Article  Google Scholar 

  4. 4.

    A.M. Antoine and B. Drevillon, J. Appl. Phys. 63(2), 360 (1988).

    CAS  Article  Google Scholar 

  5. 5.

    R.W. Collins and B.Y. Yang, J. Vac. Sci. Technol. B 7(5), 1155 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    Y.M. Li, Ilsin An, H.V. Nguyen, CR. Wronski, and R.W. Collins, Phys. Rev. Let. 68 (18), 2814 (1992).

    CAS  Article  Google Scholar 

  7. 7.

    G.C. Stutzin, R.M. Ostrom, A. Gallagher, and D.M. Tanenbaum, J. Appl. Phys. 74(1), 91 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    D.M. Tanenbaum, A. Laracuente, and A. Gallagher in Amorphous Silicon Technology, (Mat. Res. Soc. Symp. Proc. 336, Pittsburgh, PA, 1994) pp. 49–54.

  9. 9.

    H.N. Wanka, E. Lotter, and M.B. Schubert in Amorphous Silicon Technology, (Mat. Res. Soc. Symp. Proc. 336, Pittsburgh, PA, 1994) pp. 657–662.

  10. 10.

    H.N. Wanka, M.B. Schubert, and E. Lotter, presented at the 1th WCPEC, Hawai, (in print) 1994.

  11. 11.

    S.N. Jasperson, D.K. Burge, and R.C. O’Handley, Surf. Sci. 37, 548 (1973).

    CAS  Article  Google Scholar 

  12. 12.

    R.M.A. Azzam and N.M. Bashara, in Ellipsometry and Polarized Light, (North-Holland, Amsterdam, 1977), pp. 332–340.

    Google Scholar 

  13. 13.

    D.A.G. Bruggeman, Ann. Phys. 24, 636 (1935).

    CAS  Article  Google Scholar 

  14. 14.

    N. Maley, Phys. Rev. B 46(4), 2078 (1992).

    CAS  Article  Google Scholar 

  15. 15.

    M.J. McCaughey and M.J. Kusher, J. Appl. Phys. 65(1), 186 (1989).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. N. Wanka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wanka, H.N., Hierzenberger, A. & Schubert, M.B. Investigation of the Surface Morphology of a-Si:H by Atomic Force Microscopy and In-Situ Ellipsometry. MRS Online Proceedings Library 377, 263–268 (1995). https://doi.org/10.1557/PROC-377-263

Download citation