Microstructure-Electrical Propertyrelationships in Cement-Based Materialss

Abstract

There has been much recent progress on the application of impedance spectroscopy (IS) to the study of microstructure and transport in cement-based materials. The IS spectrum allows for the precise determination of bulk resistance, which is a measure of the pore phase interconnectivity, and calculation of the relative dielectric constant, which is related to the capillary pore size and distribution. High values of the relative dielectric constant (~105) observed in cement paste at early hydration times are the direct result of the microstructure inducing dielectric amplification. Solvent exchange and freezing experiments, combined with digital-image-based computer modeling, have confirmed the role of large capillary pores in the dielectric amplification in young pastes.

The conductivities (σ) and relative dielectric constants (εr) of ordinary portland cement (OPC) pastes were monitored during cooling and solvent exchange with isopropanol and methanol. Dramatic decreases in ~ and εr, in some cases over two orders of magnitude, occurred at the initial freezing point of the aqueous phase in the macropores and large capillary pores. The same dramatic decreases in a and er were observed at the onset of solvent exchange. Both effects provide experimental support for the dielectric amplification mechanism within the microstructure on the εm-scale. A secondary dielectric amplification was observed in the frozen and solvent exchanged pastes, which produced dielectric constants on the order of 103. This effect is attributed to amplification on the μm-scale within the layered calcium silicate hydrate (C-S-H) gel microstructure. Additional insight into the variable nature of the C-S-H microstructure was obtained by comparing the dielectric behavior of methanol-exchanged OPC pastes to isopropanolexchanged OPC pastes.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    W.J. McCarter, S. Garvin, and N. Bouzid, J. Mater. Sci. Lett. 7 (10), 1056 (1988).

    CAS  Article  Google Scholar 

  2. [2]

    W.J. McCarter and R. Brousseau, Cem. Concr. Res. 20, 891 (1990).

    CAS  Article  Google Scholar 

  3. [3]

    P.R. Camp and S. Bilotta, J. Appl. Phys. 66 (12), 6007 (1989).

    CAS  Article  Google Scholar 

  4. [4]

    C.A. Scuderi, T.O. Mason, and H.M. Jennings, J. Mater. Sci. 26, 349 (1991).

    CAS  Article  Google Scholar 

  5. [5]

    K. Brantervik and G.A. Niklasson, Cem. Concr. Res. 21, 496 (1991).

    CAS  Article  Google Scholar 

  6. [6]

    P. Gu, Z. Xu, P. Xie, and J.J. Beaudoin, Cem. Concr. Res. 23 (4), 531 (1993).

    CAS  Article  Google Scholar 

  7. [7]

    Z. Xu, P. Gu, P. Xie, and J.J. Beaudoin, Cem. Concr. Res. 23 (4), 853 (1993).

    CAS  Article  Google Scholar 

  8. [8]

    Z. Xu, P. Gu, P. Xie, and J.J. Beaudoin, Cem. Con. Res. 23 (5), 1007 (1993).

    CAS  Article  Google Scholar 

  9. [9]

    B.J. Christensen, R.T. Coverdale, R.A. Olson, S.J. Ford, E.J. Garboczi, T.O. Mason, and H.M. Jennings, I. Am. Cer. Soc. 77 (11), 2789 (1994).

    CAS  Article  Google Scholar 

  10. [10]

    R.T. Coverdale, B.J. Christensen, T.O. Mason, H.M. Jennings, E.J. Garboczi, and D.P. Bentz, J. Mater. Sci., in press.

  11. [11]

    R.T. Coverdale, B.J. Christensen, T.O. Mason, H.M. Jennings, and E.J. Garboczi, J. Mater. Sci. 29, 4984 (1994).

    CAS  Article  Google Scholar 

  12. [12]

    R.A. Olson, B.J. Christensen, R.T. Coverdale, S.J. Ford, G.M. Moss, E.J. Garboczi, H.M. Jennings, and T.O. Mason, submitted to J. Mater. Sci.

  13. [13]

    G.M. Moss, B.J. Christensen, E.J. Garboczi, H.M. Jennings, and T.O. Mason, submitted to J. ACBM.

  14. [14]

    P.N. Sen, Geophysics 46, 1714 (1981).

    Article  Google Scholar 

  15. [15]

    F. Brouers, A. Ramsamugh, V.V. Dixit, J. Mater. Sci. 22, 2759 (1987).

    CAS  Article  Google Scholar 

  16. [16]

    A.J. Moulson and J.M Herbert, Electroceramics, (Chapman and Hall, New York, 1990), p. 261.

    Google Scholar 

  17. [17]

    B.A. Boukamp, Equivalent Circuit (EQUIVCRT.PAS), University of Twente, Department of Chemical Technology, P.O. Box 217, 7500 AE Enschede, The Netherlands, (1988).

    Google Scholar 

  18. [18]

    S.J. Ford, B.J. Christensen, R.T. Coverdale, E.J. Garboczi, H.M. Jennings, and T.O. Mason, submitted to J. Mater. Sci.

  19. [19]

    B.J. Christensen, PhD thesis, Northwestern University, (1993).

    Google Scholar 

  20. [20]

    D.H. Bager and E.J. Sellevold, Cem. Concr. Res. 16, 709 (1986).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. A. Olson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Olson, R.A., Moss, G.M., Christensen, B.J. et al. Microstructure-Electrical Propertyrelationships in Cement-Based Materialss. MRS Online Proceedings Library 370, 255–264 (1994). https://doi.org/10.1557/PROC-370-255

Download citation