Nucleation and Growth Processes During the Chemical Vapor Deposition of Diamond

Abstract

In situ microbalance measurements of diamond growth rates are described. These results can be used to test proposed mechanisms for diamond growth and suggest mechanisms for sp impurity incorporation. The Thiele modulus is a simple criterion for growth uniformity and is used to compare hot-filament and combustion-assisted growth.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. [1]

    M. Tamor and M.P. Everson, J. Mater. Res. 7, 1839 (1994).

    Article  Google Scholar 

  2. [2]

    C. Wild, R. Kohl, N. Herres, W. Muller-Sebert and P. Koidl, Diamond and Related Materials 3, 373 (1994).

    CAS  Article  Google Scholar 

  3. [3]

    J.C. Angus, M. Sunkara, S.R. Sahaida and J.T. Glass, J. Mater. Res. 7, 3001 (1992).

    CAS  Article  Google Scholar 

  4. [4]

    K. Ravi, J. Mater. Res. 7, 384 (1992).

    CAS  Article  Google Scholar 

  5. [5]

    C.S. Kovach, B. Roozbehani, T. Suzuki and J.C. Angus, Proc. 2nd Int. Conf. on the Applications of Diamond Films and Related Materials, M. Yoshikawa, M. Murakawa, Y. Tzeng and W.A. Yarbrough, Eds., MYU, Tokyo, 1993.

  6. [6]

    J.C. Angus, Z. Li, M. Sunkara, C. Lee, W.R.L. Lambrecht and B. Segall, in Diamond Materials, J.P. Dismukes and K.V. Ravi, Eds., Proceedings Volume 93–17, Electrochemical Society, Pennington, NJ (1993), pp. 128–137.

    Google Scholar 

  7. [7]

    W.R.L. Lambrecht, C.H. Lee, B. Segall, J.C. Angus, Z. Li and M. Sunkara, Nature 364, 607 (1993).

    CAS  Article  Google Scholar 

  8. [8]

    Z. Li, L. Wang, T. Suzuki, A. Argoitia, P. Pirouz and J.C. Angus, J. Appl. Phys. 73, 711 (1992).

    Article  Google Scholar 

  9. [9]

    J.E. Butler, Phil. Trans. A 342, 209 (1993).

    CAS  Article  Google Scholar 

  10. [10]

    S.J. Harris and D.G. Goodwin, J Phys. Chem. 97, 23 (1993).

    CAS  Article  Google Scholar 

  11. [11]

    M. Frenklach and H. Wang, Phys. Rev. B 43, 1520 (1991).

    CAS  Article  Google Scholar 

  12. [12]

    J.S. Kim and M.A. Capelli, J. Appl. Phys. 72, 5461 (1992).

    CAS  Article  Google Scholar 

  13. [13]

    B.W. Wu and S.L. Girschick, J. Appl. Phys. 75, 3914 (1994).

    Article  Google Scholar 

  14. [14]

    J.C. Angus, A. Argoitia, R. Gat, Z. Li, M. Sunkara, L. Wang and Y. Wang, Phil. Trans. Roy. Soc. A 342, 195 (1992).

    Google Scholar 

  15. [15]

    D.G. Goodwin, J. Appl. Phys. 74, 6888 (1993).

    CAS  Article  Google Scholar 

  16. [16]

    S.P. Chauhan, J.C. Angus and N.C. Gardner, J. Appl. Phys. 47, 4746 (1976).

    CAS  Article  Google Scholar 

  17. [17]

    D.V. Fedoseev and B.V. Deryagin, Zh. Fiz. Khimii 53, 752 (1979).

    CAS  Google Scholar 

  18. [18]

    S.J. Harris and A.M. Weiner, J. Appl. Phys. 70, 1385 (1991).

    CAS  Article  Google Scholar 

  19. [19]

    Y. Wang and J.C. Angus, Proc. 3rd Symposium on Diamond Materials, Proc. Vol. 93–17, Electrochemical Society, Pennington, NJ (1993), pp. 249–255.

  20. [20]

    Y. Wang, E.A. Evans, L. Zeatoun and J.C. Angus, Proc. Third IUMRS Int. Conf. on Adv. Materials, M. Wakatsuki {etet al.}, Eds., Nikkam Kogyo Shimbum, Ltd., Tokyo (1993).

  21. [21]

    C.J. Chu, R.H. Hauge, J.L. Margrave and M.P. D'Evelyn, Appl. Phys. Lett. 61, 1393 (1992).

    CAS  Article  Google Scholar 

  22. [22]

    B.R. Stoner, B.E. Williams, S.D. Wolter, J.T. Glass, J. Mater. Res. 7, 257 (1992).

    CAS  Article  Google Scholar 

  23. [23]

    E.A. Evans, MS Thesis, Case Western Reserve University, Cleveland, OH, 1994.

  24. [24]

    P.K. Bachmann, D. Leers and H. Lydtin, Diamond and Related Materials 1, 1 (1991).

    CAS  Article  Google Scholar 

  25. [25]

    N. Prijaya, J.C. Angus and P.K. Bachmann, Diamond and Related Materials 3, 129 (1993).

    Article  Google Scholar 

  26. [26]

    C.J. Chu, G.J. Bai, M.P. D'Evelyn, R. H. Hauge and J.L. Margrave, in Diamond, Silicon Carbide and Related Wide Band Gap Semiconductors, J.T. Glass, R. Messier, and N. Fujimori, Eds., Mater. Res. Symp. Proc. 162, Pittsburgh, PA, 1990, pp. 85–90.

    Article  Google Scholar 

  27. [27]

    J.C. Angus and E.A. Evans, Proc. Materials Res. Soc. Meeting, San Francisco, CA, April 4–8, 1994.

    Google Scholar 

  28. [28]

    B.J. Palmer and R.G. Gordon, Thin Solid Films 158, 313 (1988).

    Article  Google Scholar 

  29. [29]

    R.F. Sekerka, J. Cryst. Growth 128,1 (1993).

    CAS  Article  Google Scholar 

  30. [30]

    CELL DESIGN, L-Chem. Inc., PO Box 20003, Shaker Heights, OH, 44120, USA.

Download references

Acknowledgments

The authors gratefully acknowledge a National Science Foundation Materials Research Group grant. Mr. Sam Hubish provided support with the graphics. Some parts of this work appeared in the Proceedings of Advanced Materials 94, published by the National Institute for Research in Inorganic Materials, Tsukuba, Japan, 1994.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yaxin Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Evans, E.A., Kovach, C.S. et al. Nucleation and Growth Processes During the Chemical Vapor Deposition of Diamond. MRS Online Proceedings Library 363, 127–138 (1994). https://doi.org/10.1557/PROC-363-127

Download citation