Engineering Considerations in the Application of NiTiHf and NiAI as Practical High-Temperature Shape Memory Alloys

Abstract

NiTiHf and NiAI have shown the potential for development as high temperature shape memory alloys with transformation temperatures of 150°C or higher. However, various engineering considerations must be addressed before these systems can be used as practical high temperature shape memory alloys. These considerations include: fabricability, phase stability, mechanical stability, and cost. NiTiHf is attractive from a cost standpoint, although its fabricability must still be demonstrated on larger heats of material. The phase stability and mechanical stability of NiTiHf are unknown. NiAI requires great improvements in both fabricability and phase stability. The mechanical stability and costs for producing NiAI shape memory alloys are still unclear.

This is a preview of subscription content, access via your institution.

References

  1. 2.

    D. N. AbuJudom II, P. E. Thoma, M-Y Kao, and D. R. Angst, United States Patent Number 5,114,504 (1992).

  2. 2.

    K. Enami and S. Nenno, Met. Trans., 2, 1487 (1971).

    CAS  Google Scholar 

  3. 3.

    J. L. Smialek and R. F. Heheman, Met. Trans., 4, 1571 (1973).

    CAS  Google Scholar 

  4. 4.

    S. M. Russell, C. C. Law, M. J. Blackburn, P. C. Clapp, and D. M. Pease, “Lightweight Disk Alloy Development,” Air Force Report WRDC-TR-90-4125 (1991).

    Google Scholar 

  5. 5.

    S. M. Tuominen and J. Biermann, United States Patent Number 4,865,663 (1989).

  6. 6.

    S. M. Tuominen, in the Proceedings of the SMST Conference, Pacific Grove, CA, March 1994, to be published.

    Google Scholar 

  7. 7.

    D. B. Miracle, Acta Metall. Mater., 41, 649 (1993).

    CAS  Article  Google Scholar 

  8. 8.

    R. Darolia, J. Metals, 43, 44 (1991).

    CAS  Google Scholar 

  9. 9.

    C. C. Law and M. J. Blackburn, “Rapidly Solidified Lightweight Durable Disk Material,” Final Technical Air Force Report, F33615-84-C-5067 (1987).

    Google Scholar 

  10. 10.

    S. Guha, I. Baker, P. R. Munroe, and J. R. Michael, Mat. Sci. and Eng., A152, 258 (1992).

    CAS  Article  Google Scholar 

  11. 11.

    E. M. Schulson and D. R. Barker, Scripta Met., 17, 519 (1983).

    CAS  Article  Google Scholar 

  12. 12.

    K. Vedula, K. H. Hahn and B. Boulogne, Mat. Res. Soc. Symp. Proc., 133, 299 (1989).

    Article  Google Scholar 

  13. 13.

    M. H. Wu (private communication).

  14. 14.

    P. Nash, M. F. Singleton and J. L. Murray, in Phase Diagrams of Binary Nickel Alloys, edited by P. Nash, Vol. 1 (ASM International, Metals Park, Ohio, 1991).

  15. 15.

    P. S. Khadkikar, I. E. Locci, K. Vedula, and G. M. Michal, Met. Trans. A, 24A, 83 (1993).

    CAS  Article  Google Scholar 

  16. 16.

    S. M. Russell, “The Effects of Alloying on the Phase Stability of NiAI,” Masters Thesis, University of Connecticut, to be published.

  17. 17.

    D. G. Pettifor, New Scientist, 48 (May 29, 1986).

  18. 18.

    P. R. Strutt and B. H. Kear, Mat. Res. Soc. Symp. Proc., 39, 279 (1985).

    CAS  Article  Google Scholar 

  19. 19.

    K. Vedula, V. Pathare, I. Aslanidis, and R. H. Titran, Mat. Res. Soc. Symp. Proc., 39,411 (1985).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Russell, S.M., Sczerzenie, F. Engineering Considerations in the Application of NiTiHf and NiAI as Practical High-Temperature Shape Memory Alloys. MRS Online Proceedings Library 360, 455–460 (1994). https://doi.org/10.1557/PROC-360-455

Download citation